ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.01961
  4. Cited By
Learning from MOM's principles: Le Cam's approach

Learning from MOM's principles: Le Cam's approach

8 January 2017
Lecué Guillaume
Lerasle Matthieu
ArXivPDFHTML

Papers citing "Learning from MOM's principles: Le Cam's approach"

37 / 37 papers shown
Title
Robust high-dimensional Gaussian and bootstrap approximations for
  trimmed sample means
Robust high-dimensional Gaussian and bootstrap approximations for trimmed sample means
Lucas Resende
28
1
0
29 Oct 2024
Minimax Linear Regression under the Quantile Risk
Minimax Linear Regression under the Quantile Risk
Ayoub El Hanchi
Chris J. Maddison
Murat A. Erdogdu
20
2
0
17 Jun 2024
Robust Stochastic Optimization via Gradient Quantile Clipping
Robust Stochastic Optimization via Gradient Quantile Clipping
Ibrahim Merad
Stéphane Gaïffas
16
1
0
29 Sep 2023
Robust and non asymptotic estimation of probability weighted moments
  with application to extreme value analysis
Robust and non asymptotic estimation of probability weighted moments with application to extreme value analysis
Anna Ben-Hamou
Philippe Naveau
Maud Thomas
9
0
0
19 Jun 2023
Computationally Efficient and Statistically Optimal Robust
  High-Dimensional Linear Regression
Computationally Efficient and Statistically Optimal Robust High-Dimensional Linear Regression
Yinan Shen
Jingyang Li
Jian-Feng Cai
Dong Xia
24
1
0
10 May 2023
Trimmed sample means for robust uniform mean estimation and regression
Trimmed sample means for robust uniform mean estimation and regression
R. I. Oliveira
Lucas Resende
22
5
0
13 Feb 2023
Robust empirical risk minimization via Newton's method
Robust empirical risk minimization via Newton's method
Eirini Ioannou
Muni Sreenivas Pydi
Po-Ling Loh
21
2
0
30 Jan 2023
On deviation probabilities in non-parametric regression
On deviation probabilities in non-parametric regression
Anna Ben-Hamou
A. Guyader
26
1
0
25 Jan 2023
Uniform Concentration Bounds toward a Unified Framework for Robust
  Clustering
Uniform Concentration Bounds toward a Unified Framework for Robust Clustering
Debolina Paul
Saptarshi Chakraborty
Swagatam Das
Jason Xu
12
16
0
27 Oct 2021
DeepMoM: Robust Deep Learning With Median-of-Means
DeepMoM: Robust Deep Learning With Median-of-Means
Shih-Ting Huang
Johannes Lederer
FedML
19
6
0
28 May 2021
Robust Principal Component Analysis: A Median of Means Approach
Robust Principal Component Analysis: A Median of Means Approach
Debolina Paul
Saptarshi Chakraborty
Swagatam Das
16
8
0
05 Feb 2021
Optimal robust mean and location estimation via convex programs with
  respect to any pseudo-norms
Optimal robust mean and location estimation via convex programs with respect to any pseudo-norms
Jules Depersin
Guillaume Lecué
15
12
0
01 Feb 2021
A spectral algorithm for robust regression with subgaussian rates
A spectral algorithm for robust regression with subgaussian rates
Jules Depersin
19
14
0
12 Jul 2020
Robust Kernel Density Estimation with Median-of-Means principle
Robust Kernel Density Estimation with Median-of-Means principle
Pierre Humbert
B. L. Bars
Ludovic Minvielle
Nicolas Vayatis
6
10
0
30 Jun 2020
Universal Robust Regression via Maximum Mean Discrepancy
Universal Robust Regression via Maximum Mean Discrepancy
Pierre Alquier
Mathieu Gerber
38
15
0
01 Jun 2020
Robust subgaussian estimation with VC-dimension
Robust subgaussian estimation with VC-dimension
Jules Depersin
25
12
0
24 Apr 2020
K-bMOM: a robust Lloyd-type clustering algorithm based on bootstrap
  Median-of-Means
K-bMOM: a robust Lloyd-type clustering algorithm based on bootstrap Median-of-Means
Camille Brunet
Edouard Genetay
Adrien Saumard
9
11
0
10 Feb 2020
All-In-One Robust Estimator of the Gaussian Mean
All-In-One Robust Estimator of the Gaussian Mean
A. Dalalyan
A. Minasyan
18
25
0
04 Feb 2020
Lecture Notes: Selected topics on robust statistical learning theory
Lecture Notes: Selected topics on robust statistical learning theory
M. Lerasle
OOD
14
32
0
28 Aug 2019
Distributed High-dimensional Regression Under a Quantile Loss Function
Distributed High-dimensional Regression Under a Quantile Loss Function
Xi Chen
Weidong Liu
Xiaojun Mao
Zhuoyi Yang
17
71
0
13 Jun 2019
Mean estimation and regression under heavy-tailed distributions--a
  survey
Mean estimation and regression under heavy-tailed distributions--a survey
Gabor Lugosi
S. Mendelson
8
238
0
10 Jun 2019
Robust subgaussian estimation of a mean vector in nearly linear time
Robust subgaussian estimation of a mean vector in nearly linear time
Jules Depersin
Guillaume Lecué
21
92
0
07 Jun 2019
Robust high dimensional learning for Lipschitz and convex losses
Robust high dimensional learning for Lipschitz and convex losses
Geoffrey Chinot
Guillaume Lecué
M. Lerasle
21
18
0
10 May 2019
Confidence regions and minimax rates in outlier-robust estimation on the
  probability simplex
Confidence regions and minimax rates in outlier-robust estimation on the probability simplex
A. Bateni
A. Dalalyan
9
6
0
12 Feb 2019
A MOM-based ensemble method for robustness, subsampling and
  hyperparameter tuning
A MOM-based ensemble method for robustness, subsampling and hyperparameter tuning
Joon Kwon
Guillaume Lecué
M. Lerasle
14
2
0
06 Dec 2018
Robust descent using smoothed multiplicative noise
Robust descent using smoothed multiplicative noise
Matthew J. Holland
OOD
13
27
0
15 Oct 2018
Robust classification via MOM minimization
Robust classification via MOM minimization
Guillaume Lecué
M. Lerasle
Timlothée Mathieu
14
48
0
09 Aug 2018
Finite sample improvement of Akaike's Information Criterion
Finite sample improvement of Akaike's Information Criterion
Adrien Saumard
F. Navarro
6
3
0
06 Mar 2018
MONK -- Outlier-Robust Mean Embedding Estimation by Median-of-Means
MONK -- Outlier-Robust Mean Embedding Estimation by Median-of-Means
M. Lerasle
Z. Szabó
Gaspar Massiot
Guillaume Lecué
26
34
0
13 Feb 2018
Minimax estimation of a p-dimensional linear functional in sparse
  Gaussian models and robust estimation of the mean
Minimax estimation of a p-dimensional linear functional in sparse Gaussian models and robust estimation of the mean
O. Collier
A. Dalalyan
14
8
0
15 Dec 2017
Robust machine learning by median-of-means : theory and practice
Robust machine learning by median-of-means : theory and practice
Guillaume Lecué
M. Lerasle
OOD
31
155
0
28 Nov 2017
Efficient learning with robust gradient descent
Efficient learning with robust gradient descent
Matthew J. Holland
K. Ikeda
OOD
17
26
0
01 Jun 2017
Regularization, sparse recovery, and median-of-means tournaments
Regularization, sparse recovery, and median-of-means tournaments
Gábor Lugosi
S. Mendelson
25
48
0
15 Jan 2017
Simpler PAC-Bayesian Bounds for Hostile Data
Simpler PAC-Bayesian Bounds for Hostile Data
Pierre Alquier
Benjamin Guedj
79
72
0
23 Oct 2016
SLOPE is Adaptive to Unknown Sparsity and Asymptotically Minimax
SLOPE is Adaptive to Unknown Sparsity and Asymptotically Minimax
Weijie Su
Emmanuel Candes
65
145
0
29 Mar 2015
Learning without Concentration for General Loss Functions
Learning without Concentration for General Loss Functions
S. Mendelson
55
65
0
13 Oct 2014
Learning without Concentration
Learning without Concentration
S. Mendelson
80
334
0
01 Jan 2014
1