Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1701.04006
Cited By
Probabilistic Numerical Methods for PDE-constrained Bayesian Inverse Problems
15 January 2017
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Probabilistic Numerical Methods for PDE-constrained Bayesian Inverse Problems"
26 / 26 papers shown
Title
Are Statistical Methods Obsolete in the Era of Deep Learning?
Skyler Wu
Shihao Yang
S. C. Kou
12
0
0
27 May 2025
Flexible and Efficient Probabilistic PDE Solvers through Gaussian Markov Random Fields
Tim Weiland
Marvin Pfortner
Philipp Hennig
AI4CE
79
0
0
11 Mar 2025
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Yasamin Jalalian
Juan Felipe Osorio Ramirez
Alexander W. Hsu
Bamdad Hosseini
H. Owhadi
176
0
0
02 Mar 2025
Physics-Informed Variational State-Space Gaussian Processes
Oliver Hamelijnck
Arno Solin
Theodoros Damoulas
64
1
0
20 Sep 2024
Scaling up Probabilistic PDE Simulators with Structured Volumetric Information
Tim Weiland
Marvin Pfortner
Philipp Hennig
AI4CE
79
3
0
07 Jun 2024
Gaussian Measures Conditioned on Nonlinear Observations: Consistency, MAP Estimators, and Simulation
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
106
1
0
21 May 2024
Solving High Frequency and Multi-Scale PDEs with Gaussian Processes
Shikai Fang
Madison Cooley
Da Long
Shibo Li
R. Kirby
Shandian Zhe
77
4
0
08 Nov 2023
Gaussian processes for Bayesian inverse problems associated with linear partial differential equations
Tianming Bai
A. Teckentrup
K. Zygalakis
68
13
0
17 Jul 2023
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
Pau Batlle
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
80
18
0
08 May 2023
Images of Gaussian and other stochastic processes under closed, densely-defined, unbounded linear operators
T. Matsumoto
T. Sullivan
70
3
0
05 May 2023
Introduction To Gaussian Process Regression In Bayesian Inverse Problems, With New ResultsOn Experimental Design For Weighted Error Measures
T. Helin
Andrew M. Stuart
A. Teckentrup
K. Zygalakis
62
5
0
09 Feb 2023
Gaussian Process Priors for Systems of Linear Partial Differential Equations with Constant Coefficients
Marc Härkönen
Markus Lange-Hegermann
Bogdan Raiță
140
16
0
29 Dec 2022
Physics-Informed Gaussian Process Regression Generalizes Linear PDE Solvers
Marvin Pfortner
Ingo Steinwart
Philipp Hennig
Jonathan Wenger
AI4CE
119
29
0
23 Dec 2022
Parameter Inference based on Gaussian Processes Informed by Nonlinear Partial Differential Equations
Zhao-Xia Li
Shih-Feng Yang
Jeff Wu
102
2
0
22 Dec 2022
Stochastic Processes Under Linear Differential Constraints : Application to Gaussian Process Regression for the 3 Dimensional Free Space Wave Equation
Iain Henderson
P. Noble
O. Roustant
47
1
0
23 Nov 2021
Probabilistic Numerical Method of Lines for Time-Dependent Partial Differential Equations
Nicholas Kramer
Jonathan Schmidt
Philipp Hennig
73
19
0
22 Oct 2021
Black Box Probabilistic Numerics
Onur Teymur
Christopher N. Foley
Philip G. Breen
Toni Karvonen
Chris J. Oates
55
5
0
15 Jun 2021
Solving and Learning Nonlinear PDEs with Gaussian Processes
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
82
157
0
24 Mar 2021
Differentiable Likelihoods for Fast Inversion of 'Likelihood-Free' Dynamical Systems
Hans Kersting
N. Krämer
Martin Schiegg
Christian Daniel
Michael Tiemann
Philipp Hennig
70
21
0
21 Feb 2020
Comments on the article "A Bayesian conjugate gradient method"
T. Sullivan
18
0
0
24 Jun 2019
A Modern Retrospective on Probabilistic Numerics
Chris J. Oates
T. Sullivan
AI4CE
101
64
0
14 Jan 2019
Rejoinder for "Probabilistic Integration: A Role in Statistical Computation?"
François‐Xavier Briol
Chris J. Oates
Mark Girolami
Michael A. Osborne
Dino Sejdinovic
49
9
0
26 Nov 2018
Bayesian Quadrature for Multiple Related Integrals
Xiaoyue Xi
François‐Xavier Briol
Mark Girolami
108
39
0
12 Jan 2018
Bayesian Probabilistic Numerical Methods
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
106
166
0
13 Feb 2017
Machine Learning of Linear Differential Equations using Gaussian Processes
M. Raissi
George Karniadakis
85
553
0
10 Jan 2017
Convergence Rates for a Class of Estimators Based on Stein's Method
Chris J. Oates
Jon Cockayne
F. Briol
Mark Girolami
83
57
0
10 Mar 2016
1