Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1701.05306
Cited By
Estimating Individual Treatment Effect in Observational Data Using Random Forest Methods
19 January 2017
Gian-Andrea Thanei
Saad Sadiq
Daniel J. Feaster
N. Meinshausen
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Estimating Individual Treatment Effect in Observational Data Using Random Forest Methods"
9 / 9 papers shown
Title
Extended Fiducial Inference for Individual Treatment Effects via Deep Neural Networks
Sehwan Kim
F. Liang
FedML
41
0
0
04 May 2025
Linking a predictive model to causal effect estimation
Jiuyong Li
Lin Liu
Ziqi Xu
Ha Xuan Tran
T. Le
Jixue Liu
CML
12
0
0
10 Apr 2023
Doubly Robust Counterfactual Classification
K. Kim
Edward H. Kennedy
J. Zubizarreta
OffRL
19
5
0
15 Jan 2023
What Makes Forest-Based Heterogeneous Treatment Effect Estimators Work?
Susanne Dandl
Torsten Hothorn
H. Seibold
Erik Sverdrup
Stefan Wager
A. Zeileis
CML
34
11
0
21 Jun 2022
Individual causal effects from observational longitudinal studies with time-varying exposures
Richard Post
Z. Zhan
Edwin R. van den Heuvel
CML
16
0
0
06 Sep 2021
The Bias-Variance Tradeoff of Doubly Robust Estimator with Targeted
L
1
L_1
L
1
regularized Neural Networks Predictions
M. Rostami
O. Saarela
M. Escobar
27
1
0
02 Aug 2021
Estimating Individual Treatment Effects using Non-Parametric Regression Models: a Review
A. Caron
G. Baio
I. Manolopoulou
CML
10
52
0
14 Sep 2020
Bayesian Inference of Individualized Treatment Effects using Multi-task Gaussian Processes
Ahmed Alaa
M. Schaar
CML
17
298
0
10 Apr 2017
Random Forest Missing Data Algorithms
Fei Tang
H. Ishwaran
48
520
0
19 Jan 2017
1