ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.01185
  4. Cited By
Basis Adaptive Sample Efficient Polynomial Chaos (BASE-PC)

Basis Adaptive Sample Efficient Polynomial Chaos (BASE-PC)

3 February 2017
Jerrad Hampton
Alireza Doostan
ArXiv (abs)PDFHTML

Papers citing "Basis Adaptive Sample Efficient Polynomial Chaos (BASE-PC)"

13 / 13 papers shown
Title
Polynomial Chaos Expansions on Principal Geodesic Grassmannian
  Submanifolds for Surrogate Modeling and Uncertainty Quantification
Polynomial Chaos Expansions on Principal Geodesic Grassmannian Submanifolds for Surrogate Modeling and Uncertainty Quantification
Dimitris G. Giovanis
Dimitrios Loukrezis
Ioannis G. Kevrekidis
Michael D. Shields
128
5
0
30 Jan 2024
Bi-fidelity Variational Auto-encoder for Uncertainty Quantification
Bi-fidelity Variational Auto-encoder for Uncertainty Quantification
Nuojin Cheng
Osman Asif Malik
Subhayan De
Stephen Becker
Alireza Doostan
122
11
0
25 May 2023
On efficient algorithms for computing near-best polynomial
  approximations to high-dimensional, Hilbert-valued functions from limited
  samples
On efficient algorithms for computing near-best polynomial approximations to high-dimensional, Hilbert-valued functions from limited samples
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
120
11
0
25 Mar 2022
A survey of unsupervised learning methods for high-dimensional
  uncertainty quantification in black-box-type problems
A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems
Katiana Kontolati
Dimitrios Loukrezis
D. D. Giovanis
Lohit Vandanapu
Michael D. Shields
146
47
0
09 Feb 2022
GenMod: A generative modeling approach for spectral representation of
  PDEs with random inputs
GenMod: A generative modeling approach for spectral representation of PDEs with random inputs
Jacqueline Wentz
Alireza Doostan
94
1
0
31 Jan 2022
A general framework of rotational sparse approximation in uncertainty
  quantification
A general framework of rotational sparse approximation in uncertainty quantification
Mengqi Hu
Y. Lou
Xiu Yang
69
0
0
13 Jan 2021
Automatic selection of basis-adaptive sparse polynomial chaos expansions
  for engineering applications
Automatic selection of basis-adaptive sparse polynomial chaos expansions for engineering applications
Nora Lüthen
S. Marelli
Bruno Sudret
149
31
0
10 Sep 2020
Sparse Polynomial Chaos Expansions: Literature Survey and Benchmark
Sparse Polynomial Chaos Expansions: Literature Survey and Benchmark
Nora Lüthen
S. Marelli
Bruno Sudret
169
171
0
04 Feb 2020
Sparse Polynomial Chaos Expansions via Compressed Sensing and D-optimal
  Design
Sparse Polynomial Chaos Expansions via Compressed Sensing and D-optimal Design
Paul Diaz
Alireza Doostan
Jerrad Hampton
94
102
0
29 Dec 2017
Least Squares Polynomial Chaos Expansion: A Review of Sampling
  Strategies
Least Squares Polynomial Chaos Expansion: A Review of Sampling Strategies
M. Hadigol
Alireza Doostan
83
134
0
23 Jun 2017
Divide and Conquer: An Incremental Sparsity Promoting Compressive
  Sampling Approach for Polynomial Chaos Expansions
Divide and Conquer: An Incremental Sparsity Promoting Compressive Sampling Approach for Polynomial Chaos Expansions
Negin Alemazkoor
Hadi Meidani
71
26
0
21 Jun 2016
On Polynomial Chaos Expansion via Gradient-enhanced
  $\ell_1$-minimization
On Polynomial Chaos Expansion via Gradient-enhanced ℓ1\ell_1ℓ1​-minimization
Jigen Peng
Jerrad Hampton
Alireza Doostan
116
80
0
01 Jun 2015
Coherence Motivated Sampling and Convergence Analysis of Least-Squares
  Polynomial Chaos Regression
Coherence Motivated Sampling and Convergence Analysis of Least-Squares Polynomial Chaos Regression
Jerrad Hampton
Alireza Doostan
93
150
0
07 Oct 2014
1