ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.01932
11
569

A Knowledge-Grounded Neural Conversation Model

7 February 2017
Marjan Ghazvininejad
Chris Brockett
Ming-Wei Chang
W. Dolan
Jianfeng Gao
Wen-tau Yih
Michel Galley
    BDL
ArXivPDFHTML
Abstract

Neural network models are capable of generating extremely natural sounding conversational interactions. Nevertheless, these models have yet to demonstrate that they can incorporate content in the form of factual information or entity-grounded opinion that would enable them to serve in more task-oriented conversational applications. This paper presents a novel, fully data-driven, and knowledge-grounded neural conversation model aimed at producing more contentful responses without slot filling. We generalize the widely-used Seq2Seq approach by conditioning responses on both conversation history and external "facts", allowing the model to be versatile and applicable in an open-domain setting. Our approach yields significant improvements over a competitive Seq2Seq baseline. Human judges found that our outputs are significantly more informative.

View on arXiv
Comments on this paper