ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.05150
  4. Cited By
BubbleView: an interface for crowdsourcing image importance maps and
  tracking visual attention

BubbleView: an interface for crowdsourcing image importance maps and tracking visual attention

16 February 2017
N. Kim
Zoya Bylinskii
M. Borkin
Krzysztof Z. Gajos
A. Oliva
F. Durand
Hanspeter Pfister
ArXivPDFHTML

Papers citing "BubbleView: an interface for crowdsourcing image importance maps and tracking visual attention"

11 / 11 papers shown
Title
GazeFusion: Saliency-Guided Image Generation
GazeFusion: Saliency-Guided Image Generation
Yunxiang Zhang
Nan Wu
Connor Z. Lin
Gordon Wetzstein
Qi Sun
40
0
0
16 Mar 2024
Do You See What I See? A Qualitative Study Eliciting High-Level
  Visualization Comprehension
Do You See What I See? A Qualitative Study Eliciting High-Level Visualization Comprehension
Ghulam Jilani Quadri
Arran Zeyu Wang
Zhehao Wang
Jennifer Adorno
Paul Rosen
D. Szafir
41
18
0
23 Feb 2024
"The main message is that sustainability would help" -- Reflections on
  takeaway messages of climate change data visualizations
"The main message is that sustainability would help" -- Reflections on takeaway messages of climate change data visualizations
Regina Schuster
Laura M. Koesten
Kathleen Gregory
Torsten Moller
16
1
0
06 May 2023
InfoColorizer: Interactive Recommendation of Color Palettes for
  Infographics
InfoColorizer: Interactive Recommendation of Color Palettes for Infographics
Linping Yuan
Ziqi Zhou
Jian Zhao
Yiqiu Guo
F. Du
Huamin Qu
43
46
0
03 Feb 2021
Learning to Automate Chart Layout Configurations Using Crowdsourced
  Paired Comparison
Learning to Automate Chart Layout Configurations Using Crowdsourced Paired Comparison
Aoyu Wu
Liwenhan Xie
Bongshin Lee
Yun Wang
Weiwei Cui
Huamin Qu
38
33
0
11 Jan 2021
Predicting Visual Importance Across Graphic Design Types
Predicting Visual Importance Across Graphic Design Types
Camilo Luciano Fosco
Vincent Casser
A. K. Bedi
Peter O'Donovan
Aaron Hertzmann
Zoya Bylinskii
HAI
12
56
0
07 Aug 2020
TurkEyes: A Web-Based Toolbox for Crowdsourcing Attention Data
TurkEyes: A Web-Based Toolbox for Crowdsourcing Attention Data
Anelise Newman
Barry A. McNamara
Camilo Luciano Fosco
Y. Zhang
Patr Sukhum
Matthew Tancik
N. Kim
Zoya Bylinskii
13
18
0
13 Jan 2020
Predicting video saliency using crowdsourced mouse-tracking data
Predicting video saliency using crowdsourced mouse-tracking data
Vitaliy Lyudvichenko
D. Vatolin
HAI
6
4
0
30 Jun 2019
Are all the frames equally important?
Are all the frames equally important?
Oleksii Sidorov
Marius Pedersen
N. Kim
Sumit Shekhar
6
2
0
20 May 2019
Bottom-up Attention, Models of
Bottom-up Attention, Models of
Ali Borji
Hamed R. Tavakoli
Zoya Bylinskii
3DV
16
4
0
11 Oct 2018
Learning Visual Importance for Graphic Designs and Data Visualizations
Learning Visual Importance for Graphic Designs and Data Visualizations
Zoya Bylinskii
N. Kim
Peter O'Donovan
Sami Alsheikh
Spandan Madan
Hanspeter Pfister
F. Durand
Bryan C. Russell
Aaron Hertzmann
HAI
13
162
0
08 Aug 2017
1