ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.03389
  4. Cited By
Faster Greedy MAP Inference for Determinantal Point Processes
v1v2 (latest)

Faster Greedy MAP Inference for Determinantal Point Processes

9 March 2017
Insu Han
P. Kambadur
KyoungSoo Park
Jinwoo Shin
ArXiv (abs)PDFHTML

Papers citing "Faster Greedy MAP Inference for Determinantal Point Processes"

9 / 9 papers shown
Title
Determinantal Point Process Attention Over Grid Cell Code Supports Out
  of Distribution Generalization
Determinantal Point Process Attention Over Grid Cell Code Supports Out of Distribution Generalization
S. S. Mondal
Steven M. Frankland
Taylor Webb
Jonathan D. Cohen
77
1
0
28 May 2023
Compositional Exemplars for In-context Learning
Compositional Exemplars for In-context Learning
Jiacheng Ye
Zhiyong Wu
Jiangtao Feng
Tao Yu
Lingpeng Kong
149
134
0
11 Feb 2023
Neural Design for Genetic Perturbation Experiments
Neural Design for Genetic Perturbation Experiments
Aldo Pacchiano
Drausin Wulsin
Robert A. Barton
L. Voloch
80
5
0
26 Jul 2022
Lazy and Fast Greedy MAP Inference for Determinantal Point Process
Lazy and Fast Greedy MAP Inference for Determinantal Point Process
Shinichi Hemmi
Taihei Oki
Shinsaku Sakaue
K. Fujii
Satoru Iwata
40
4
0
13 Jun 2022
Scalable Sampling for Nonsymmetric Determinantal Point Processes
Scalable Sampling for Nonsymmetric Determinantal Point Processes
Insu Han
Mike Gartrell
Jennifer Gillenwater
Elvis Dohmatob
Amin Karbasi
61
4
0
20 Jan 2022
Some Inapproximability Results of MAP Inference and Exponentiated
  Determinantal Point Processes
Some Inapproximability Results of MAP Inference and Exponentiated Determinantal Point Processes
Naoto Ohsaka
58
4
0
02 Sep 2021
Determinantal Beam Search
Determinantal Beam Search
Clara Meister
Martina Forster
Ryan Cotterell
59
13
0
14 Jun 2021
Scalable Learning and MAP Inference for Nonsymmetric Determinantal Point
  Processes
Scalable Learning and MAP Inference for Nonsymmetric Determinantal Point Processes
Mike Gartrell
Insu Han
Elvis Dohmatob
Jennifer Gillenwater
Victor-Emmanuel Brunel
60
16
0
17 Jun 2020
VBALD - Variational Bayesian Approximation of Log Determinants
VBALD - Variational Bayesian Approximation of Log Determinants
Diego Granziol
E. Wagstaff
Binxin Ru
Michael A. Osborne
Stephen J. Roberts
42
2
0
21 Feb 2018
1