ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.04940
  4. Cited By
Resilience: A Criterion for Learning in the Presence of Arbitrary
  Outliers

Resilience: A Criterion for Learning in the Presence of Arbitrary Outliers

15 March 2017
Jacob Steinhardt
Moses Charikar
Gregory Valiant
ArXivPDFHTML

Papers citing "Resilience: A Criterion for Learning in the Presence of Arbitrary Outliers"

24 / 24 papers shown
Title
Towards Trustworthy Federated Learning with Untrusted Participants
Towards Trustworthy Federated Learning with Untrusted Participants
Youssef Allouah
R. Guerraoui
John Stephan
FedML
43
0
0
03 May 2025
Robust Sparse Mean Estimation via Incremental Learning
Robust Sparse Mean Estimation via Incremental Learning
Jianhao Ma
Ruidi Chen
Yinghui He
S. Fattahi
Wei Hu
30
0
0
24 May 2023
Robust Estimation under the Wasserstein Distance
Robust Estimation under the Wasserstein Distance
Sloan Nietert
Rachel Cummings
Ziv Goldfeld
28
4
0
02 Feb 2023
Near Optimal Private and Robust Linear Regression
Near Optimal Private and Robust Linear Regression
Xiyang Liu
Prateek Jain
Weihao Kong
Sewoong Oh
A. Suggala
26
9
0
30 Jan 2023
Statistical, Robustness, and Computational Guarantees for Sliced
  Wasserstein Distances
Statistical, Robustness, and Computational Guarantees for Sliced Wasserstein Distances
Sloan Nietert
Ritwik Sadhu
Ziv Goldfeld
Kengo Kato
22
36
0
17 Oct 2022
Trimmed Maximum Likelihood Estimation for Robust Learning in Generalized
  Linear Models
Trimmed Maximum Likelihood Estimation for Robust Learning in Generalized Linear Models
Pranjal Awasthi
Abhimanyu Das
Weihao Kong
Rajat Sen
17
5
0
09 Jun 2022
Communication-efficient distributed eigenspace estimation with arbitrary
  node failures
Communication-efficient distributed eigenspace estimation with arbitrary node failures
Vasileios Charisopoulos
Anil Damle
11
1
0
31 May 2022
Byzantine-Robust Federated Learning with Optimal Statistical Rates and
  Privacy Guarantees
Byzantine-Robust Federated Learning with Optimal Statistical Rates and Privacy Guarantees
Banghua Zhu
Lun Wang
Qi Pang
Shuai Wang
Jiantao Jiao
D. Song
Michael I. Jordan
FedML
91
30
0
24 May 2022
Byzantine Fault Tolerance in Distributed Machine Learning : a Survey
Byzantine Fault Tolerance in Distributed Machine Learning : a Survey
Djamila Bouhata
Hamouma Moumen
Moumen Hamouma
Ahcène Bounceur
AI4CE
23
7
0
05 May 2022
Robust estimation algorithms don't need to know the corruption level
Robust estimation algorithms don't need to know the corruption level
Ayush Jain
A. Orlitsky
V. Ravindrakumar
8
6
0
11 Feb 2022
Robust Estimation for Random Graphs
Robust Estimation for Random Graphs
Jayadev Acharya
Ayush Jain
Gautam Kamath
A. Suresh
Huanyu Zhang
24
8
0
09 Nov 2021
Polynomial-Time Sum-of-Squares Can Robustly Estimate Mean and Covariance
  of Gaussians Optimally
Polynomial-Time Sum-of-Squares Can Robustly Estimate Mean and Covariance of Gaussians Optimally
Pravesh Kothari
Peter Manohar
Brian Hu Zhang
8
16
0
22 Oct 2021
Robust Regression Revisited: Acceleration and Improved Estimation Rates
Robust Regression Revisited: Acceleration and Improved Estimation Rates
A. Jambulapati
J. Li
T. Schramm
Kevin Tian
AAML
19
17
0
22 Jun 2021
Outlier-Robust Learning of Ising Models Under Dobrushin's Condition
Outlier-Robust Learning of Ising Models Under Dobrushin's Condition
Ilias Diakonikolas
D. Kane
Alistair Stewart
Yuxin Sun
22
15
0
03 Feb 2021
Privacy and Robustness in Federated Learning: Attacks and Defenses
Privacy and Robustness in Federated Learning: Attacks and Defenses
Lingjuan Lyu
Han Yu
Xingjun Ma
Chen Chen
Lichao Sun
Jun Zhao
Qiang Yang
Philip S. Yu
FedML
169
355
0
07 Dec 2020
Outlier Robust Mean Estimation with Subgaussian Rates via Stability
Outlier Robust Mean Estimation with Subgaussian Rates via Stability
Ilias Diakonikolas
D. Kane
Ankit Pensia
6
57
0
30 Jul 2020
Optimal Robust Linear Regression in Nearly Linear Time
Optimal Robust Linear Regression in Nearly Linear Time
Yeshwanth Cherapanamjeri
Efe Aras
Nilesh Tripuraneni
Michael I. Jordan
Nicolas Flammarion
Peter L. Bartlett
33
35
0
16 Jul 2020
Robustly Learning any Clusterable Mixture of Gaussians
Robustly Learning any Clusterable Mixture of Gaussians
Ilias Diakonikolas
Samuel B. Hopkins
D. Kane
Sushrut Karmalkar
26
45
0
13 May 2020
Stochastic-Sign SGD for Federated Learning with Theoretical Guarantees
Stochastic-Sign SGD for Federated Learning with Theoretical Guarantees
Richeng Jin
Yufan Huang
Xiaofan He
H. Dai
Tianfu Wu
FedML
11
63
0
25 Feb 2020
List Decodable Subspace Recovery
List Decodable Subspace Recovery
P. Raghavendra
Morris Yau
28
25
0
07 Feb 2020
Outlier-Robust High-Dimensional Sparse Estimation via Iterative
  Filtering
Outlier-Robust High-Dimensional Sparse Estimation via Iterative Filtering
Ilias Diakonikolas
Sushrut Karmalkar
D. Kane
Eric Price
Alistair Stewart
14
41
0
19 Nov 2019
Efficient Statistics, in High Dimensions, from Truncated Samples
Efficient Statistics, in High Dimensions, from Truncated Samples
C. Daskalakis
Themis Gouleakis
Christos Tzamos
Manolis Zampetakis
28
46
0
11 Sep 2018
Defending Against Saddle Point Attack in Byzantine-Robust Distributed
  Learning
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning
Dong Yin
Yudong Chen
K. Ramchandran
Peter L. Bartlett
FedML
11
97
0
14 Jun 2018
Robust Estimators in High Dimensions without the Computational
  Intractability
Robust Estimators in High Dimensions without the Computational Intractability
Ilias Diakonikolas
Gautam Kamath
D. Kane
J. Li
Ankur Moitra
Alistair Stewart
21
505
0
21 Apr 2016
1