ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.06610
  4. Cited By
Asymptotic performance of PCA for high-dimensional heteroscedastic data

Asymptotic performance of PCA for high-dimensional heteroscedastic data

20 March 2017
David Hong
Laura Balzano
Jeffrey A. Fessler
ArXivPDFHTML

Papers citing "Asymptotic performance of PCA for high-dimensional heteroscedastic data"

9 / 9 papers shown
Title
ALPCAH: Subspace Learning for Sample-wise Heteroscedastic Data
ALPCAH: Subspace Learning for Sample-wise Heteroscedastic Data
Javier Salazar Cavazos
Jeffrey A. Fessler
Laura Balzano
29
2
0
12 May 2025
Deflated HeteroPCA: Overcoming the curse of ill-conditioning in
  heteroskedastic PCA
Deflated HeteroPCA: Overcoming the curse of ill-conditioning in heteroskedastic PCA
Yuchen Zhou
Yuxin Chen
38
4
0
10 Mar 2023
HePPCAT: Probabilistic PCA for Data with Heteroscedastic Noise
HePPCAT: Probabilistic PCA for Data with Heteroscedastic Noise
David Hong
Kyle Gilman
Laura Balzano
Jeffrey A. Fessler
32
18
0
10 Jan 2021
Selecting the number of components in PCA via random signflips
Selecting the number of components in PCA via random signflips
David Hong
Yueqi Sheng
Edgar Dobriban
11
15
0
05 Dec 2020
On the Non-Asymptotic Concentration of Heteroskedastic Wishart-type
  Matrix
On the Non-Asymptotic Concentration of Heteroskedastic Wishart-type Matrix
T. Tony Cai
Rungang Han
Anru R. Zhang
34
15
0
28 Aug 2020
Learning Entangled Single-Sample Gaussians in the Subset-of-Signals
  Model
Learning Entangled Single-Sample Gaussians in the Subset-of-Signals Model
Yingyu Liang
Hui Yuan
19
5
0
10 Jul 2020
Rapid evaluation of the spectral signal detection threshold and
  Stieltjes transform
Rapid evaluation of the spectral signal detection threshold and Stieltjes transform
W. Leeb
19
7
0
26 Apr 2019
Optimal spectral shrinkage and PCA with heteroscedastic noise
Optimal spectral shrinkage and PCA with heteroscedastic noise
Qiangqiang Wu
Yanjie Liang
20
25
0
06 Nov 2018
Correlated-PCA: Principal Components' Analysis when Data and Noise are
  Correlated
Correlated-PCA: Principal Components' Analysis when Data and Noise are Correlated
Namrata Vaswani
Han Guo
20
25
0
15 Aug 2016
1