ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.06777
  4. Cited By
On the Use of Default Parameter Settings in the Empirical Evaluation of
  Classification Algorithms

On the Use of Default Parameter Settings in the Empirical Evaluation of Classification Algorithms

20 March 2017
A. Bagnall
G. Cawley
ArXiv (abs)PDFHTML

Papers citing "On the Use of Default Parameter Settings in the Empirical Evaluation of Classification Algorithms"

4 / 4 papers shown
Title
Handling Imbalanced Classification Problems With Support Vector Machines
  via Evolutionary Bilevel Optimization
Handling Imbalanced Classification Problems With Support Vector Machines via Evolutionary Bilevel Optimization
Alejandro Rosales-Pérez
S. García
Francisco Herrera
76
17
0
21 Apr 2022
AutonoML: Towards an Integrated Framework for Autonomous Machine
  Learning
AutonoML: Towards an Integrated Framework for Autonomous Machine Learning
D. Kedziora
Katarzyna Musial
Bogdan Gabrys
94
17
0
23 Dec 2020
Enhancing Selection Hyper-heuristics via Feature Transformations
Enhancing Selection Hyper-heuristics via Feature Transformations
I. Amaya
J. C. Ortíz-Bayliss
Alejandro Rosales-Pérez
A. E. Gutiérrez-Rodríguez
S. E. Conant-Pablos
Hugo Terashima-Marín
C. Coello
30
19
0
12 Dec 2018
The Heterogeneous Ensembles of Standard Classification Algorithms
  (HESCA): the Whole is Greater than the Sum of its Parts
The Heterogeneous Ensembles of Standard Classification Algorithms (HESCA): the Whole is Greater than the Sum of its Parts
J. Large
Jason Lines
A. Bagnall
58
28
0
25 Oct 2017
1