ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.07713
28
31

Hierarchical RNN with Static Sentence-Level Attention for Text-Based Speaker Change Detection

22 March 2017
Zhao Meng
Lili Mou
Zhi Jin
    BDL
ArXivPDFHTML
Abstract

Speaker change detection (SCD) is an important task in dialog modeling. Our paper addresses the problem of text-based SCD, which differs from existing audio-based studies and is useful in various scenarios, for example, processing dialog transcripts where speaker identities are missing (e.g., OpenSubtitle), and enhancing audio SCD with textual information. We formulate text-based SCD as a matching problem of utterances before and after a certain decision point; we propose a hierarchical recurrent neural network (RNN) with static sentence-level attention. Experimental results show that neural networks consistently achieve better performance than feature-based approaches, and that our attention-based model significantly outperforms non-attention neural networks.

View on arXiv
Comments on this paper