ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.08961
  4. Cited By
Scaling the Scattering Transform: Deep Hybrid Networks

Scaling the Scattering Transform: Deep Hybrid Networks

27 March 2017
Edouard Oyallon
Eugene Belilovsky
Sergey Zagoruyko
ArXivPDFHTML

Papers citing "Scaling the Scattering Transform: Deep Hybrid Networks"

19 / 19 papers shown
Title
Infinite Class Mixup
Infinite Class Mixup
Thomas Mensink
Pascal Mettes
24
2
0
17 May 2023
On the Shift Invariance of Max Pooling Feature Maps in Convolutional Neural Networks
On the Shift Invariance of Max Pooling Feature Maps in Convolutional Neural Networks
Hubert Leterme
K. Polisano
V. Perrier
Alahari Karteek
FAtt
38
2
0
19 Sep 2022
Efficient Hybrid Network: Inducting Scattering Features
Efficient Hybrid Network: Inducting Scattering Features
D. Minskiy
M. Bober
15
3
0
29 Mar 2022
Learning Operators with Coupled Attention
Learning Operators with Coupled Attention
Georgios Kissas
Jacob H. Seidman
Leonardo Ferreira Guilhoto
V. Preciado
George J. Pappas
P. Perdikaris
24
109
0
04 Jan 2022
Hybrid BYOL-ViT: Efficient approach to deal with small datasets
Hybrid BYOL-ViT: Efficient approach to deal with small datasets
Safwen Naimi
Rien van Leeuwen
W. Souidène
S. B. Saoud
SSL
ViT
25
2
0
08 Nov 2021
Tune It or Don't Use It: Benchmarking Data-Efficient Image
  Classification
Tune It or Don't Use It: Benchmarking Data-Efficient Image Classification
Lorenzo Brigato
Björn Barz
Luca Iocchi
Joachim Denzler
30
16
0
30 Aug 2021
Concurrent Discrimination and Alignment for Self-Supervised Feature
  Learning
Concurrent Discrimination and Alignment for Self-Supervised Feature Learning
Anjan Dutta
Massimiliano Mancini
Zeynep Akata
SSL
22
0
0
19 Aug 2021
Resolution learning in deep convolutional networks using scale-space
  theory
Resolution learning in deep convolutional networks using scale-space theory
Silvia L.Pintea
Nergis Tomen
Stanley F. Goes
Marco Loog
J. C. V. Gemert
SupR
SSL
24
37
0
07 Jun 2021
A Mean-field Analysis of Deep ResNet and Beyond: Towards Provable
  Optimization Via Overparameterization From Depth
A Mean-field Analysis of Deep ResNet and Beyond: Towards Provable Optimization Via Overparameterization From Depth
Yiping Lu
Chao Ma
Yulong Lu
Jianfeng Lu
Lexing Ying
MLT
31
78
0
11 Mar 2020
Unsupervised Embedding Learning via Invariant and Spreading Instance
  Feature
Unsupervised Embedding Learning via Invariant and Spreading Instance Feature
Mang Ye
Xu-Yao Zhang
PongChi Yuen
Shih-Fu Chang
SSL
22
577
0
06 Apr 2019
AVT: Unsupervised Learning of Transformation Equivariant Representations
  by Autoencoding Variational Transformations
AVT: Unsupervised Learning of Transformation Equivariant Representations by Autoencoding Variational Transformations
Guo-Jun Qi
Liheng Zhang
Chang Wen Chen
Qi Tian
DRL
16
42
0
23 Mar 2019
Approximating CNNs with Bag-of-local-Features models works surprisingly
  well on ImageNet
Approximating CNNs with Bag-of-local-Features models works surprisingly well on ImageNet
Wieland Brendel
Matthias Bethge
SSL
FAtt
26
557
0
20 Mar 2019
A Learnable ScatterNet: Locally Invariant Convolutional Layers
A Learnable ScatterNet: Locally Invariant Convolutional Layers
Fergal Cotter
N. Kingsbury
13
22
0
07 Mar 2019
AET vs. AED: Unsupervised Representation Learning by Auto-Encoding
  Transformations rather than Data
AET vs. AED: Unsupervised Representation Learning by Auto-Encoding Transformations rather than Data
Liheng Zhang
Guo-Jun Qi
Liqiang Wang
Jiebo Luo
14
202
0
14 Jan 2019
Harmonic Networks: Integrating Spectral Information into CNNs
Harmonic Networks: Integrating Spectral Information into CNNs
Matej Ulicny
V. Krylov
Rozenn Dahyot
18
7
0
07 Dec 2018
A Kernel Perspective for Regularizing Deep Neural Networks
A Kernel Perspective for Regularizing Deep Neural Networks
A. Bietti
Grégoire Mialon
Dexiong Chen
Julien Mairal
11
15
0
30 Sep 2018
Scattering Networks for Hybrid Representation Learning
Scattering Networks for Hybrid Representation Learning
Edouard Oyallon
Sergey Zagoruyko
Gabriel Huang
N. Komodakis
Simon Lacoste-Julien
Matthew Blaschko
Eugene Belilovsky
13
84
0
17 Sep 2018
Invariant Information Clustering for Unsupervised Image Classification
  and Segmentation
Invariant Information Clustering for Unsupervised Image Classification and Segmentation
Xu Ji
João F. Henriques
Andrea Vedaldi
SSL
VLM
14
839
0
17 Jul 2018
Generative networks as inverse problems with Scattering transforms
Generative networks as inverse problems with Scattering transforms
Tomás Angles
S. Mallat
GAN
28
31
0
17 May 2018
1