Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.10230
Cited By
Numerical Gaussian Processes for Time-dependent and Non-linear Partial Differential Equations
29 March 2017
M. Raissi
P. Perdikaris
George Karniadakis
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Numerical Gaussian Processes for Time-dependent and Non-linear Partial Differential Equations"
50 / 63 papers shown
Title
A general physics-constrained method for the modelling of equation's closure terms with sparse data
Tian Chen
Shengping Liu
Li Liu
Heng Yong
PINN
AI4CE
78
0
0
30 Apr 2025
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Yasamin Jalalian
Juan Felipe Osorio Ramirez
Alexander W. Hsu
Bamdad Hosseini
H. Owhadi
174
0
0
02 Mar 2025
Gaussian Process Port-Hamiltonian Systems: Bayesian Learning with Physics Prior
Thomas Beckers
Jacob H. Seidman
P. Perdikaris
George J. Pappas
PINN
82
17
0
15 May 2023
Laplace-fPINNs: Laplace-based fractional physics-informed neural networks for solving forward and inverse problems of subdiffusion
Xiongbin Yan
Zhi-Qin John Xu
Zheng Ma
65
2
0
03 Apr 2023
Gaussian Process Priors for Systems of Linear Partial Differential Equations with Constant Coefficients
Marc Härkönen
Markus Lange-Hegermann
Bogdan Raiță
133
16
0
29 Dec 2022
High Precision Differentiation Techniques for Data-Driven Solution of Nonlinear PDEs by Physics-Informed Neural Networks
M. Mukhametzhanov
28
1
0
02 Oct 2022
Use of BNNM for interference wave solutions of the gBS-like equation and comparison with PINNs
S. Vadyala
S. N. Betgeri
72
0
0
07 Aug 2022
Scalable algorithms for physics-informed neural and graph networks
K. Shukla
Mengjia Xu
N. Trask
George Karniadakis
PINN
AI4CE
131
41
0
16 May 2022
Neural Implicit Representations for Physical Parameter Inference from a Single Video
Florian Hofherr
Lukas Koestler
Florian Bernard
Daniel Cremers
AI4CE
114
10
0
29 Apr 2022
MultiAuto-DeepONet: A Multi-resolution Autoencoder DeepONet for Nonlinear Dimension Reduction, Uncertainty Quantification and Operator Learning of Forward and Inverse Stochastic Problems
Jiahao Zhang
Shiqi Zhang
Guang Lin
95
15
0
07 Apr 2022
Monte Carlo PINNs: deep learning approach for forward and inverse problems involving high dimensional fractional partial differential equations
Ling Guo
Hao Wu
Xiao-Jun Yu
Tao Zhou
PINN
AI4CE
64
63
0
16 Mar 2022
Incorporating Sum Constraints into Multitask Gaussian Processes
Philipp Pilar
Carl Jidling
Thomas B. Schon
Niklas Wahlström
TPM
44
3
0
03 Feb 2022
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
123
1,293
0
14 Jan 2022
Stochastic Processes Under Linear Differential Constraints : Application to Gaussian Process Regression for the 3 Dimensional Free Space Wave Equation
Iain Henderson
P. Noble
O. Roustant
47
1
0
23 Nov 2021
Learning Free-Surface Flow with Physics-Informed Neural Networks
Raphael Leiteritz
Marcel Hurler
Dirk Pflüger
PINN
AI4CE
53
7
0
17 Nov 2021
Recipes for when Physics Fails: Recovering Robust Learning of Physics Informed Neural Networks
Minh Nguyen
Luke McLennan
T. Andeen
Avik Roy
PINN
59
29
0
26 Oct 2021
Probabilistic Numerical Method of Lines for Time-Dependent Partial Differential Equations
Nicholas Kramer
Jonathan Schmidt
Philipp Hennig
73
19
0
22 Oct 2021
Wasserstein Generative Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Yihang Gao
Michael K. Ng
78
30
0
30 Aug 2021
Normalizing field flows: Solving forward and inverse stochastic differential equations using physics-informed flow models
Ling Guo
Hao Wu
Tao Zhou
AI4CE
77
48
0
30 Aug 2021
Physics-informed neural networks (PINNs) for fluid mechanics: A review
Shengze Cai
Zhiping Mao
Zhicheng Wang
Minglang Yin
George Karniadakis
PINN
AI4CE
96
1,213
0
20 May 2021
Dominant motion identification of multi-particle system using deep learning from video
Yayati Jadhav
Amir Barati Farimani
116
5
0
26 Apr 2021
Bayesian Numerical Methods for Nonlinear Partial Differential Equations
Junyang Wang
Jon Cockayne
O. Chkrebtii
T. Sullivan
Chris J. Oates
111
19
0
22 Apr 2021
Solving and Learning Nonlinear PDEs with Gaussian Processes
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
82
157
0
24 Mar 2021
A Deep Collocation Method for the Bending Analysis of Kirchhoff Plate
Hongwei Guo
X. Zhuang
Timon Rabczuk
AI4CE
60
439
0
04 Feb 2021
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
117
153
0
22 Dec 2020
APIK: Active Physics-Informed Kriging Model with Partial Differential Equations
Jialei Chen
Zhehui Chen
Chuck Zhang
C. F. J. Wu
99
15
0
22 Dec 2020
Data-driven rogue waves and parameter discovery in the defocusing NLS equation with a potential using the PINN deep learning
Li Wang
Zhenya Yan
76
85
0
18 Dec 2020
System Identification Through Lipschitz Regularized Deep Neural Networks
Elisa Negrini
G. Citti
L. Capogna
38
12
0
07 Sep 2020
A Survey of Constrained Gaussian Process Regression: Approaches and Implementation Challenges
L. Swiler
Mamikon A. Gulian
A. Frankel
Cosmin Safta
J. Jakeman
GP
AI4CE
104
106
0
16 Jun 2020
Hybrid Scheme of Kinematic Analysis and Lagrangian Koopman Operator Analysis for Short-term Precipitation Forecasting
Shitao Zheng
T. Miyamoto
K. Iwanami
S. Shimizu
Ryohei Kato
65
3
0
03 Jun 2020
When Machine Learning Meets Multiscale Modeling in Chemical Reactions
Wuyue Yang
Liangrong Peng
Yi Zhu
L. Hong
AI4CE
20
12
0
01 Jun 2020
SciANN: A Keras/Tensorflow wrapper for scientific computations and physics-informed deep learning using artificial neural networks
E. Haghighat
R. Juanes
AI4CE
PINN
123
21
0
11 May 2020
Active Training of Physics-Informed Neural Networks to Aggregate and Interpolate Parametric Solutions to the Navier-Stokes Equations
Christopher J. Arthurs
A. King
PINN
152
52
0
02 May 2020
Nonnegativity-Enforced Gaussian Process Regression
Andrew Pensoneault
Xiu Yang
Xueyu Zhu
69
28
0
07 Apr 2020
Discovery of Dynamics Using Linear Multistep Methods
Rachael Keller
Q. Du
83
36
0
29 Dec 2019
Sparse Polynomial Chaos expansions using Variational Relevance Vector Machines
Panagiotis Tsilifis
I. Papaioannou
D. Štraub
F. Nobile
119
19
0
23 Dec 2019
Numerical Gaussian process Kalman filtering
Armin Küper
S. Waldherr
131
3
0
03 Dec 2019
Physics Informed Extreme Learning Machine (PIELM) -- A rapid method for the numerical solution of partial differential equations
Vikas Dwivedi
Balaji Srinivasan
PINN
79
194
0
08 Jul 2019
SNODE: Spectral Discretization of Neural ODEs for System Identification
A. Quaglino
Marco Gallieri
Jonathan Masci
Jan Koutník
AI4TS
106
48
0
17 Jun 2019
Enforcing constraints for time series prediction in supervised, unsupervised and reinforcement learning
P. Stinis
AI4TS
AI4CE
71
11
0
17 May 2019
Fleet Prognosis with Physics-informed Recurrent Neural Networks
R. Nascimento
F. Viana
25
52
0
16 Jan 2019
Physics-Informed CoKriging: A Gaussian-Process-Regression-Based Multifidelity Method for Data-Model Convergence
Xiu Yang
D. Barajas-Solano
G. Tartakovsky
A. Tartakovsky
73
78
0
24 Nov 2018
Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Yibo Yang
P. Perdikaris
AI4CE
PINN
142
361
0
09 Nov 2018
Physics-Informed Generative Adversarial Networks for Stochastic Differential Equations
Siyu Dai
Shawn Schaffert
Andreas G. Hofmann
134
367
0
05 Nov 2018
Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems
Dongkun Zhang
Lu Lu
Ling Guo
George Karniadakis
UQCV
124
412
0
21 Sep 2018
Data-driven discovery of PDEs in complex datasets
Jens Berg
K. Nystrom
AI4CE
PINN
71
141
0
31 Aug 2018
Deep Learning of Vortex Induced Vibrations
M. Raissi
Zhicheng Wang
M. Triantafyllou
George Karniadakis
AI4CE
79
378
0
26 Aug 2018
Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework for Assimilating Flow Visualization Data
M. Raissi
A. Yazdani
George Karniadakis
AI4CE
PINN
99
161
0
13 Aug 2018
Machine Learning of Space-Fractional Differential Equations
Mamikon A. Gulian
M. Raissi
P. Perdikaris
George Karniadakis
109
47
0
02 Aug 2018
Neural-net-induced Gaussian process regression for function approximation and PDE solution
G. Pang
Liu Yang
George Karniadakis
70
73
0
22 Jun 2018
1
2
Next