Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1704.00060
Cited By
Exploiting gradients and Hessians in Bayesian optimization and Bayesian quadrature
31 March 2017
Anqi Wu
Mikio C. Aoi
Jonathan W. Pillow
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exploiting gradients and Hessians in Bayesian optimization and Bayesian quadrature"
9 / 9 papers shown
Title
Batch Active Learning in Gaussian Process Regression using Derivatives
Hon Sum Alec Yu
Christoph Zimmer
D. Nguyen-Tuong
GP
31
1
0
03 Aug 2024
Using Distance Correlation for Efficient Bayesian Optimization
T. Kanazawa
44
3
0
17 Feb 2021
Bayesian optimization with improved scalability and derivative information for efficient design of nanophotonic structures
Xavier Garcia Santiago
Sven Burger
C. Rockstuhl
Philipp‐Immanuel Schneider
20
12
0
08 Jan 2021
Neural Network Approximations for Calabi-Yau Metrics
Vishnu Jejjala
D. M. Peña
Challenger Mishra
31
53
0
31 Dec 2020
Information Directed Sampling for Linear Partial Monitoring
Johannes Kirschner
Tor Lattimore
Andreas Krause
24
46
0
25 Feb 2020
Tensor Basis Gaussian Process Models of Hyperelastic Materials
A. Frankel
Reese E. Jones
L. Swiler
16
41
0
23 Dec 2019
Learning Personalized Thermal Preferences via Bayesian Active Learning with Unimodality Constraints
Nimish Awalgaonkar
Ilias Bilionis
Xiaoqi Liu
P. Karava
Athanasios Tzempelikos
AI4TS
AI4CE
38
2
0
21 Mar 2019
On the positivity and magnitudes of Bayesian quadrature weights
Toni Karvonen
Motonobu Kanagawa
Simo Särkkä
16
12
0
20 Dec 2018
Benchmarking five global optimization approaches for nano-optical shape optimization and parameter reconstruction
Philipp‐Immanuel Schneider
Xavier Garcia Santiago
V. Soltwisch
M. Hammerschmidt
Sven Burger
C. Rockstuhl
19
88
0
18 Sep 2018
1