Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1704.00708
Cited By
No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis
3 April 2017
Rong Ge
Chi Jin
Yi Zheng
Re-assign community
ArXiv
PDF
HTML
Papers citing
"No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis"
50 / 220 papers shown
Title
Nonnegative Low-rank Matrix Recovery Can Have Spurious Local Minima
Richard Y. Zhang
24
0
0
06 May 2025
Euclidean Distance Matrix Completion via Asymmetric Projected Gradient Descent
Yicheng Li
Xinghua Sun
39
0
0
28 Apr 2025
Preconditioned Gradient Descent for Over-Parameterized Nonconvex Matrix Factorization
G. Zhang
S. Fattahi
Richard Y. Zhang
40
34
0
13 Apr 2025
Can Diffusion Models Disentangle? A Theoretical Perspective
Liming Wang
Muhammad Jehanzeb Mirza
Yishu Gong
Yuan Gong
Jiaqi Zhang
Brian Tracey
Katerina Placek
Marco Vilela
James Glass
DiffM
CoGe
82
0
0
31 Mar 2025
Recommendations from Sparse Comparison Data: Provably Fast Convergence for Nonconvex Matrix Factorization
Suryanarayana Sankagiri
Jalal Etesami
Matthias Grossglauser
36
0
0
27 Feb 2025
k
k
k
-SVD with Gradient Descent
Emily Gan
Yassir Jedra
Devavrat Shah
56
0
0
01 Feb 2025
Disentangling Interpretable Factors with Supervised Independent Subspace Principal Component Analysis
Jiayu Su
David A. Knowles
Raul Rabadan
19
0
0
31 Oct 2024
On the Crucial Role of Initialization for Matrix Factorization
Bingcong Li
Liang Zhang
Aryan Mokhtari
Niao He
26
1
0
24 Oct 2024
Implicit Regularization of Sharpness-Aware Minimization for Scale-Invariant Problems
Bingcong Li
Liang Zhang
Niao He
36
3
0
18 Oct 2024
On the Learn-to-Optimize Capabilities of Transformers in In-Context Sparse Recovery
Renpu Liu
Ruida Zhou
Cong Shen
Jing Yang
23
0
0
17 Oct 2024
Noise is All You Need: Private Second-Order Convergence of Noisy SGD
Dmitrii Avdiukhin
Michael Dinitz
Chenglin Fan
G. Yaroslavtsev
26
0
0
09 Oct 2024
ℓ
1
\ell_1
ℓ
1
-norm rank-one symmetric matrix factorization has no spurious second-order stationary points
Jiewen Guan
Anthony Man-Cho So
39
2
0
07 Oct 2024
Federated Representation Learning in the Under-Parameterized Regime
Renpu Liu
Cong Shen
Jing Yang
19
4
0
07 Jun 2024
Compressible Dynamics in Deep Overparameterized Low-Rank Learning & Adaptation
Can Yaras
Peng Wang
Laura Balzano
Qing Qu
AI4CE
27
12
0
06 Jun 2024
A Global Geometric Analysis of Maximal Coding Rate Reduction
Peng Wang
Huikang Liu
Druv Pai
Yaodong Yu
Zhihui Zhu
Q. Qu
Yi-An Ma
29
6
0
04 Jun 2024
Low solution rank of the matrix LASSO under RIP with consequences for rank-constrained algorithms
Andrew D. McRae
42
1
0
19 Apr 2024
cuFastTuckerPlus: A Stochastic Parallel Sparse FastTucker Decomposition Using GPU Tensor Cores
Zixuan Li
Mingxing Duan
Huizhang Luo
Wangdong Yang
KenLi Li
Keqin Li
29
0
0
15 Apr 2024
Robust Second-Order Nonconvex Optimization and Its Application to Low Rank Matrix Sensing
Shuyao Li
Yu Cheng
Ilias Diakonikolas
Jelena Diakonikolas
Rong Ge
Stephen J. Wright
30
2
0
12 Mar 2024
Absence of spurious solutions far from ground truth: A low-rank analysis with high-order losses
Ziye Ma
Ying Chen
Javad Lavaei
Somayeh Sojoudi
21
1
0
10 Mar 2024
Transformers Learn Nonlinear Features In Context: Nonconvex Mean-field Dynamics on the Attention Landscape
Juno Kim
Taiji Suzuki
18
18
0
02 Feb 2024
Learning Rich Rankings
Arjun Seshadri
Stephen Ragain
J. Ugander
13
12
0
22 Dec 2023
Wave Physics-informed Matrix Factorizations
Harsha Vardhan Tetali
J. Harley
B. Haeffele
27
0
0
21 Dec 2023
High Probability Guarantees for Random Reshuffling
Hengxu Yu
Xiao Li
24
2
0
20 Nov 2023
A randomized algorithm for nonconvex minimization with inexact evaluations and complexity guarantees
Shuyao Li
Stephen J. Wright
10
3
0
28 Oct 2023
Stochastic Optimization for Non-convex Problem with Inexact Hessian Matrix, Gradient, and Function
Liu Liu
Xuanqing Liu
Cho-Jui Hsieh
Dacheng Tao
16
3
0
18 Oct 2023
Provably Accelerating Ill-Conditioned Low-rank Estimation via Scaled Gradient Descent, Even with Overparameterization
Cong Ma
Xingyu Xu
Tian Tong
Yuejie Chi
11
9
0
09 Oct 2023
How Over-Parameterization Slows Down Gradient Descent in Matrix Sensing: The Curses of Symmetry and Initialization
Nuoya Xiong
Lijun Ding
Simon S. Du
17
11
0
03 Oct 2023
Global Optimality in Bivariate Gradient-based DAG Learning
Chang Deng
Kevin Bello
Bryon Aragam
Pradeep Ravikumar
25
8
0
30 Jun 2023
Curvature-Independent Last-Iterate Convergence for Games on Riemannian Manifolds
Yong Cai
Michael I. Jordan
Tianyi Lin
Argyris Oikonomou
Emmanouil-Vasileios Vlatakis-Gkaragkounis
16
4
0
29 Jun 2023
Bootstrapped Representations in Reinforcement Learning
Charline Le Lan
Stephen Tu
Mark Rowland
A. Harutyunyan
Rishabh Agarwal
Marc G. Bellemare
Will Dabney
OffRL
OOD
SSL
69
10
0
16 Jun 2023
The Law of Parsimony in Gradient Descent for Learning Deep Linear Networks
Can Yaras
P. Wang
Wei Hu
Zhihui Zhu
Laura Balzano
Qing Qu
30
17
0
01 Jun 2023
Statistically Optimal K-means Clustering via Nonnegative Low-rank Semidefinite Programming
Yubo Zhuang
Xiaohui Chen
Yun Yang
Richard Y. Zhang
8
3
0
29 May 2023
Personalized Dictionary Learning for Heterogeneous Datasets
Geyu Liang
Naichen Shi
Raed Al Kontar
S. Fattahi
23
6
0
24 May 2023
Accelerated Algorithms for Nonlinear Matrix Decomposition with the ReLU function
Giovanni Seraghiti
Atharva Awari
A. Vandaele
M. Porcelli
Nicolas Gillis
19
7
0
15 May 2023
Greedy Pruning with Group Lasso Provably Generalizes for Matrix Sensing
Nived Rajaraman
Devvrit
Aryan Mokhtari
Kannan Ramchandran
18
0
0
20 Mar 2023
Can Learning Be Explained By Local Optimality In Robust Low-rank Matrix Recovery?
Jianhao Ma
S. Fattahi
21
1
0
21 Feb 2023
Efficient displacement convex optimization with particle gradient descent
Hadi Daneshmand
J. Lee
Chi Jin
21
5
0
09 Feb 2023
Approximate message passing from random initialization with applications to
Z
2
\mathbb{Z}_{2}
Z
2
synchronization
Gen Li
Wei Fan
Yuting Wei
26
10
0
07 Feb 2023
Understanding Incremental Learning of Gradient Descent: A Fine-grained Analysis of Matrix Sensing
Jikai Jin
Zhiyuan Li
Kaifeng Lyu
S. Du
Jason D. Lee
MLT
31
34
0
27 Jan 2023
Decentralized Nonconvex Optimization with Guaranteed Privacy and Accuracy
Yongqiang Wang
Tamer Basar
11
21
0
14 Dec 2022
Symphony in the Latent Space: Provably Integrating High-dimensional Techniques with Non-linear Machine Learning Models
Qiong Wu
Jian Li
Zhenming Liu
Yanhua Li
Mihai Cucuringu
12
4
0
01 Dec 2022
Simple Alternating Minimization Provably Solves Complete Dictionary Learning
Geyu Liang
G. Zhang
S. Fattahi
Richard Y. Zhang
10
5
0
23 Oct 2022
Are All Losses Created Equal: A Neural Collapse Perspective
Jinxin Zhou
Chong You
Xiao Li
Kangning Liu
Sheng Liu
Qing Qu
Zhihui Zhu
25
57
0
04 Oct 2022
Behind the Scenes of Gradient Descent: A Trajectory Analysis via Basis Function Decomposition
Jianhao Ma
Li-Zhen Guo
S. Fattahi
27
4
0
01 Oct 2022
Nonconvex Matrix Factorization is Geodesically Convex: Global Landscape Analysis for Fixed-rank Matrix Optimization From a Riemannian Perspective
Yuetian Luo
Nicolas García Trillos
14
6
0
29 Sep 2022
A Validation Approach to Over-parameterized Matrix and Image Recovery
Lijun Ding
Zhen Qin
Liwei Jiang
Jinxin Zhou
Zhihui Zhu
25
13
0
21 Sep 2022
Gradient-Free Methods for Deterministic and Stochastic Nonsmooth Nonconvex Optimization
Tianyi Lin
Zeyu Zheng
Michael I. Jordan
49
50
0
12 Sep 2022
Accelerating SGD for Highly Ill-Conditioned Huge-Scale Online Matrix Completion
G. Zhang
Hong-Ming Chiu
Richard Y. Zhang
13
10
0
24 Aug 2022
Semidefinite Programming versus Burer-Monteiro Factorization for Matrix Sensing
Baturalp Yalcin
Ziye Ma
Javad Lavaei
Somayeh Sojoudi
21
7
0
15 Aug 2022
Gradient descent provably escapes saddle points in the training of shallow ReLU networks
Patrick Cheridito
Arnulf Jentzen
Florian Rossmannek
15
5
0
03 Aug 2022
1
2
3
4
5
Next