Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1704.02654
Cited By
Enhancing Robustness of Machine Learning Systems via Data Transformations
9 April 2017
A. Bhagoji
Daniel Cullina
Chawin Sitawarin
Prateek Mittal
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Enhancing Robustness of Machine Learning Systems via Data Transformations"
35 / 35 papers shown
Title
A Brain-Inspired Regularizer for Adversarial Robustness
Elie Attias
Cengiz Pehlevan
D. Obeid
AAML
OOD
20
0
0
04 Oct 2024
Understanding Deep Learning defenses Against Adversarial Examples Through Visualizations for Dynamic Risk Assessment
Xabier Echeberria-Barrio
Amaia Gil-Lerchundi
Jon Egana-Zubia
Raul Orduna Urrutia
AAML
37
6
0
12 Feb 2024
Boosting Robustness Verification of Semantic Feature Neighborhoods
Anan Kabaha
Dana Drachsler-Cohen
AAML
34
6
0
12 Sep 2022
Data Synthesis for Testing Black-Box Machine Learning Models
Diptikalyan Saha
Aniya Aggarwal
Sandeep Hans
25
4
0
03 Nov 2021
Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for sparse recover
Wei Pu
Chao Zhou
Yonina C. Eldar
M. Rodrigues
OOD
21
1
0
20 Oct 2021
Morphence: Moving Target Defense Against Adversarial Examples
Abderrahmen Amich
Birhanu Eshete
AAML
34
24
0
31 Aug 2021
NetFense: Adversarial Defenses against Privacy Attacks on Neural Networks for Graph Data
I-Chung Hsieh
Cheng-Te Li
AAML
25
23
0
22 Jun 2021
Sparta: Spatially Attentive and Adversarially Robust Activation
Qing Guo
Felix Juefei Xu
Changqing Zhou
Wei Feng
Yang Liu
Song Wang
AAML
38
4
0
18 May 2021
Mitigating Gradient-based Adversarial Attacks via Denoising and Compression
Rehana Mahfuz
R. Sahay
Aly El Gamal
AAML
14
3
0
03 Apr 2021
Automatic Open-World Reliability Assessment
Mohsen Jafarzadeh
T. Ahmad
A. Dhamija
Chunchun Li
Steve Cruz
Terrance E. Boult
26
11
0
11 Nov 2020
Blockchain based Attack Detection on Machine Learning Algorithms for IoT based E-Health Applications
Thippa Reddy Gadekallu
Manoj M K
Sivarama Krishnan S
Neeraj Kumar
S. Hakak
S. Bhattacharya
OOD
24
54
0
03 Nov 2020
A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack and Learning
Hongjun Wang
Guanbin Li
Xiaobai Liu
Liang Lin
GAN
AAML
21
22
0
15 Oct 2020
Adversarial Machine Learning in Image Classification: A Survey Towards the Defender's Perspective
G. R. Machado
Eugênio Silva
R. Goldschmidt
AAML
33
157
0
08 Sep 2020
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
29
73
0
07 Aug 2020
Deep Learning Defenses Against Adversarial Examples for Dynamic Risk Assessment
Xabier Echeberria-Barrio
Amaia Gil-Lerchundi
Ines Goicoechea-Telleria
Raul Orduna Urrutia
AAML
22
5
0
02 Jul 2020
ConFoc: Content-Focus Protection Against Trojan Attacks on Neural Networks
Miguel Villarreal-Vasquez
B. Bhargava
AAML
19
38
0
01 Jul 2020
DaST: Data-free Substitute Training for Adversarial Attacks
Mingyi Zhou
Jing Wu
Yipeng Liu
Shuaicheng Liu
Ce Zhu
25
142
0
28 Mar 2020
Adversarial Perturbations Prevail in the Y-Channel of the YCbCr Color Space
Camilo Pestana
Naveed Akhtar
Wei Liu
D. Glance
Ajmal Mian
AAML
29
10
0
25 Feb 2020
Using Depth for Pixel-Wise Detection of Adversarial Attacks in Crowd Counting
Weizhe Liu
Mathieu Salzmann
Pascal Fua
AAML
27
9
0
26 Nov 2019
A New Defense Against Adversarial Images: Turning a Weakness into a Strength
Tao Yu
Shengyuan Hu
Chuan Guo
Wei-Lun Chao
Kilian Q. Weinberger
AAML
58
101
0
16 Oct 2019
On Defending Against Label Flipping Attacks on Malware Detection Systems
R. Taheri
R. Javidan
Mohammad Shojafar
Zahra Pooranian
A. Miri
Mauro Conti
AAML
21
88
0
13 Aug 2019
A Computationally Efficient Method for Defending Adversarial Deep Learning Attacks
R. Sahay
Rehana Mahfuz
Aly El Gamal
AAML
22
5
0
13 Jun 2019
ML-LOO: Detecting Adversarial Examples with Feature Attribution
Puyudi Yang
Jianbo Chen
Cho-Jui Hsieh
Jane-ling Wang
Michael I. Jordan
AAML
22
101
0
08 Jun 2019
CapsAttacks: Robust and Imperceptible Adversarial Attacks on Capsule Networks
Alberto Marchisio
Giorgio Nanfa
Faiq Khalid
Muhammad Abdullah Hanif
Maurizio Martina
Mohamed Bennai
GAN
AAML
22
26
0
28 Jan 2019
Combatting Adversarial Attacks through Denoising and Dimensionality Reduction: A Cascaded Autoencoder Approach
R. Sahay
Rehana Mahfuz
Aly El Gamal
22
33
0
07 Dec 2018
Motivating the Rules of the Game for Adversarial Example Research
Justin Gilmer
Ryan P. Adams
Ian Goodfellow
David G. Andersen
George E. Dahl
AAML
50
226
0
18 Jul 2018
Detection based Defense against Adversarial Examples from the Steganalysis Point of View
Jiayang Liu
Weiming Zhang
Yiwei Zhang
Dongdong Hou
Yujia Liu
Hongyue Zha
Nenghai Yu
AAML
25
99
0
21 Jun 2018
Towards Dependable Deep Convolutional Neural Networks (CNNs) with Out-distribution Learning
Mahdieh Abbasi
Arezoo Rajabi
Christian Gagné
R. Bobba
OODD
30
6
0
24 Apr 2018
An ADMM-Based Universal Framework for Adversarial Attacks on Deep Neural Networks
Pu Zhao
Sijia Liu
Yanzhi Wang
X. Lin
AAML
20
37
0
09 Apr 2018
Unravelling Robustness of Deep Learning based Face Recognition Against Adversarial Attacks
Gaurav Goswami
Nalini Ratha
Akshay Agarwal
Richa Singh
Mayank Vatsa
AAML
21
165
0
22 Feb 2018
Shield: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression
Nilaksh Das
Madhuri Shanbhogue
Shang-Tse Chen
Fred Hohman
Siwei Li
Li-Wei Chen
Michael E. Kounavis
Duen Horng Chau
FedML
AAML
45
225
0
19 Feb 2018
Detecting Adversarial Attacks on Neural Network Policies with Visual Foresight
Yen-Chen Lin
Ming Liu
Min Sun
Jia-Bin Huang
AAML
29
48
0
02 Oct 2017
Detecting Adversarial Image Examples in Deep Networks with Adaptive Noise Reduction
Bin Liang
Hongcheng Li
Miaoqiang Su
Xirong Li
Wenchang Shi
Xiaofeng Wang
AAML
14
215
0
23 May 2017
Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
Weilin Xu
David Evans
Yanjun Qi
AAML
25
1,237
0
04 Apr 2017
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
326
5,847
0
08 Jul 2016
1