Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1704.02958
Cited By
On the Fine-Grained Complexity of Empirical Risk Minimization: Kernel Methods and Neural Networks
10 April 2017
A. Backurs
Piotr Indyk
Ludwig Schmidt
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"On the Fine-Grained Complexity of Empirical Risk Minimization: Kernel Methods and Neural Networks"
9 / 9 papers shown
Title
SLICK: Selective Localization and Instance Calibration for Knowledge-Enhanced Car Damage Segmentation in Automotive Insurance
Teerapong Panboonyuen
153
0
0
12 Jun 2025
Sub-quadratic Algorithms for Kernel Matrices via Kernel Density Estimation
Ainesh Bakshi
Piotr Indyk
Praneeth Kacham
Sandeep Silwal
Samson Zhou
104
4
0
01 Dec 2022
On The Computational Complexity of Self-Attention
Feyza Duman Keles
Pruthuvi Maheshakya Wijewardena
Chinmay Hegde
142
130
0
11 Sep 2022
Symbolic Regression is NP-hard
M. Virgolin
S. Pissis
157
64
0
03 Jul 2022
Impossibility Results for Grammar-Compressed Linear Algebra
Amir Abboud
A. Backurs
K. Bringmann
Marvin Künnemann
26
12
0
27 Oct 2020
Fast Unbalanced Optimal Transport on a Tree
Ryoma Sato
M. Yamada
H. Kashima
OT
61
26
0
04 Jun 2020
Statistical and Computational Trade-Offs in Kernel K-Means
Daniele Calandriello
Lorenzo Rosasco
53
32
0
27 Aug 2019
Tight Kernel Query Complexity of Kernel Ridge Regression and Kernel
k
k
k
-means Clustering
Manuel Fernández
David P. Woodruff
T. Yasuda
60
7
0
15 May 2019
Is Input Sparsity Time Possible for Kernel Low-Rank Approximation?
Cameron Musco
David P. Woodruff
105
13
0
05 Nov 2017
1