ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.00607
  4. Cited By
Determinantal Point Processes for Mini-Batch Diversification

Determinantal Point Processes for Mini-Batch Diversification

1 May 2017
Cheng Zhang
Hedvig Kjellström
Stephan Mandt
ArXivPDFHTML

Papers citing "Determinantal Point Processes for Mini-Batch Diversification"

14 / 14 papers shown
Title
Determinantal point processes based on orthogonal polynomials for
  sampling minibatches in SGD
Determinantal point processes based on orthogonal polynomials for sampling minibatches in SGD
Rémi Bardenet
Subhro Ghosh
Meixia Lin
19
6
0
11 Dec 2021
Differentiable Scaffolding Tree for Molecular Optimization
Differentiable Scaffolding Tree for Molecular Optimization
Tianfan Fu
Wenhao Gao
Cao Xiao
Jacob Yasonik
Connor W. Coley
Jimeng Sun
30
76
0
22 Sep 2021
Variance Reduced Training with Stratified Sampling for Forecasting
  Models
Variance Reduced Training with Stratified Sampling for Forecasting Models
Yucheng Lu
Youngsuk Park
Lifan Chen
Bernie Wang
Christopher De Sa
Dean Phillips Foster
AI4TS
38
17
0
02 Mar 2021
Data-Aware Device Scheduling for Federated Edge Learning
Data-Aware Device Scheduling for Federated Edge Learning
Afaf Taik
Zoubeir Mlika
Soumaya Cherkaoui
17
38
0
18 Feb 2021
Adaptive Task Sampling for Meta-Learning
Adaptive Task Sampling for Meta-Learning
Chenghao Liu
Zhihao Wang
Doyen Sahoo
Yuan Fang
Kun Zhang
Guosheng Lin
30
54
0
17 Jul 2020
Sampling from a $k$-DPP without looking at all items
Sampling from a kkk-DPP without looking at all items
Daniele Calandriello
Michal Derezinski
Michal Valko
32
23
0
30 Jun 2020
Scalable Learning and MAP Inference for Nonsymmetric Determinantal Point
  Processes
Scalable Learning and MAP Inference for Nonsymmetric Determinantal Point Processes
Mike Gartrell
Insu Han
Elvis Dohmatob
Jennifer Gillenwater
Victor-Emmanuel Brunel
28
16
0
17 Jun 2020
Convergence Analysis of Block Coordinate Algorithms with Determinantal
  Sampling
Convergence Analysis of Block Coordinate Algorithms with Determinantal Sampling
Mojmír Mutný
Michal Derezinski
Andreas Krause
38
21
0
25 Oct 2019
Batch Uniformization for Minimizing Maximum Anomaly Score of DNN-based
  Anomaly Detection in Sounds
Batch Uniformization for Minimizing Maximum Anomaly Score of DNN-based Anomaly Detection in Sounds
Yuma Koizumi
Shoichiro Saito
Masataka Yamaguchi
Shin Murata
N. Harada
25
25
0
19 Jul 2019
Submodular Batch Selection for Training Deep Neural Networks
Submodular Batch Selection for Training Deep Neural Networks
K. J. Joseph
R. VamshiTeja
Krishnakant Singh
V. Balasubramanian
11
23
0
20 Jun 2019
Batch Active Learning Using Determinantal Point Processes
Batch Active Learning Using Determinantal Point Processes
Erdem Biyik
Kenneth Wang
Nima Anari
Dorsa Sadigh
19
61
0
19 Jun 2019
Fast determinantal point processes via distortion-free intermediate
  sampling
Fast determinantal point processes via distortion-free intermediate sampling
Michal Derezinski
13
40
0
08 Nov 2018
Scalable Recollections for Continual Lifelong Learning
Scalable Recollections for Continual Lifelong Learning
Matthew D Riemer
Tim Klinger
Djallel Bouneffouf
M. Franceschini
CLL
24
62
0
17 Nov 2017
Determinantal point processes for machine learning
Determinantal point processes for machine learning
Alex Kulesza
B. Taskar
176
1,124
0
25 Jul 2012
1