ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.01708
  4. Cited By
Semi-Supervised AUC Optimization based on Positive-Unlabeled Learning
v1v2v3 (latest)

Semi-Supervised AUC Optimization based on Positive-Unlabeled Learning

4 May 2017
Tomoya Sakai
Gang Niu
Masashi Sugiyama
ArXiv (abs)PDFHTML

Papers citing "Semi-Supervised AUC Optimization based on Positive-Unlabeled Learning"

18 / 18 papers shown
Title
A Unified Empirical Risk Minimization Framework for Flexible N-Tuples Weak Supervision
A Unified Empirical Risk Minimization Framework for Flexible N-Tuples Weak Supervision
Shuying Huang
Junpeng Li
Changchun Hua
Yana Yang
34
0
0
10 Jul 2025
Learning from True-False Labels via Multi-modal Prompt Retrieving
Learning from True-False Labels via Multi-modal Prompt Retrieving
Zhongnian Li
Jinghao Xu
Peng Ying
Meng Wei
Tongfeng Sun
120
0
0
24 May 2024
AUC Optimization from Multiple Unlabeled Datasets
AUC Optimization from Multiple Unlabeled Datasets
Zheng Xie
Yu Liu
Ming Li
190
2
0
25 May 2023
Learning from Stochastic Labels
Learning from Stochastic Labels
Menglong Wei
Zhongnian Li
Yong Zhou
Qiaoyu Guo
Xinzheng Xu
78
0
0
01 Feb 2023
Class-Imbalanced Complementary-Label Learning via Weighted Loss
Class-Imbalanced Complementary-Label Learning via Weighted Loss
Meng Wei
Yong Zhou
Zhongnian Li
Xinzheng Xu
114
14
0
28 Sep 2022
AUC Maximization in the Era of Big Data and AI: A Survey
AUC Maximization in the Era of Big Data and AI: A Survey
Tianbao Yang
Yiming Ying
269
213
0
28 Mar 2022
A Symmetric Loss Perspective of Reliable Machine Learning
A Symmetric Loss Perspective of Reliable Machine Learning
Nontawat Charoenphakdee
Jongyeong Lee
Masashi Sugiyama
122
0
0
05 Jan 2021
Pointwise Binary Classification with Pairwise Confidence Comparisons
Pointwise Binary Classification with Pairwise Confidence Comparisons
Lei Feng
Senlin Shu
Nan Lu
Bo Han
Miao Xu
Gang Niu
Bo An
Masashi Sugiyama
167
27
0
05 Oct 2020
Unbiased Risk Estimators Can Mislead: A Case Study of Learning with
  Complementary Labels
Unbiased Risk Estimators Can Mislead: A Case Study of Learning with Complementary Labels
Yu-Ting Chou
Gang Niu
Hsuan-Tien Lin
Masashi Sugiyama
159
62
0
05 Jul 2020
MixPUL: Consistency-based Augmentation for Positive and Unlabeled
  Learning
MixPUL: Consistency-based Augmentation for Positive and Unlabeled Learning
Tong Wei
Feng Shi
Hai Wang
Wei-Wei Tu. Yu-Feng Li
71
11
0
20 Apr 2020
Rethinking Class-Prior Estimation for Positive-Unlabeled Learning
Rethinking Class-Prior Estimation for Positive-Unlabeled Learning
Yu Yao
Tongliang Liu
Bo Han
Biwei Huang
Gang Niu
Masashi Sugiyama
Dacheng Tao
106
19
0
10 Feb 2020
Learning with Multiple Complementary Labels
Learning with Multiple Complementary Labels
Lei Feng
Takuo Kaneko
Bo Han
Gang Niu
Bo An
Masashi Sugiyama
185
105
0
30 Dec 2019
Quadruply Stochastic Gradient Method for Large Scale Nonlinear
  Semi-Supervised Ordinal Regression AUC Optimization
Quadruply Stochastic Gradient Method for Large Scale Nonlinear Semi-Supervised Ordinal Regression AUC Optimization
Wanli Shi
Bin Gu
Xinag Li
Heng-Chiao Huang
166
13
0
24 Dec 2019
Anomaly Detection with Inexact Labels
Anomaly Detection with Inexact Labels
Tomoharu Iwata
Machiko Toyoda
Shotaro Tora
N. Ueda
67
16
0
11 Sep 2019
Quadruply Stochastic Gradients for Large Scale Nonlinear Semi-Supervised
  AUC Optimization
Quadruply Stochastic Gradients for Large Scale Nonlinear Semi-Supervised AUC Optimization
Wanli Shi
Bin Gu
Xiang Li
Xiang Geng
Heng-Chiao Huang
94
15
0
29 Jul 2019
An Effective Multi-Resolution Hierarchical Granular Representation based
  Classifier using General Fuzzy Min-Max Neural Network
An Effective Multi-Resolution Hierarchical Granular Representation based Classifier using General Fuzzy Min-Max Neural Network
Thanh Tung Khuat
Fang Chen
Bogdan Gabrys
120
18
0
29 May 2019
On Symmetric Losses for Learning from Corrupted Labels
On Symmetric Losses for Learning from Corrupted Labels
Nontawat Charoenphakdee
Jongyeong Lee
Masashi Sugiyama
NoLa
154
107
0
27 Jan 2019
Binary Classification from Positive-Confidence Data
Binary Classification from Positive-Confidence Data
Takashi Ishida
Gang Niu
Masashi Sugiyama
116
60
0
19 Oct 2017
1