Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.05907
Cited By
Machine Learning Molecular Dynamics for the Simulation of Infrared Spectra
16 May 2017
M. Gastegger
J. Behler
P. Marquetand
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Machine Learning Molecular Dynamics for the Simulation of Infrared Spectra"
50 / 56 papers shown
Title
Artificial Intelligence in Spectroscopy: Advancing Chemistry from Prediction to Generation and Beyond
Kehan Guo
Yili Shen
Gisela Abigail Gonzalez-Montiel
Yue Huang
Yujun Zhou
...
Zhichun Guo
Prayel Das
Nitesh Chawla
Olaf Wiest
Wei Wei
227
2
0
14 Feb 2025
Deep Neural Network for Phonon-Assisted Optical Spectra in Semiconductors
Qiangqiang Gu
S. K. Pandey
Zhanghao Zhouyin
132
0
0
02 Feb 2025
Advancing Machine Learning in Industry 4.0: Benchmark Framework for Rare-event Prediction in Chemical Processes
Vikram Sudarshan
Warren D. Seider
98
2
0
31 Aug 2024
Physics-informed active learning for accelerating quantum chemical simulations
Yi-Fan Hou
Lina Zhang
Quanhao Zhang
Fuchun Ge
Pavlo O. Dral
AI4CE
76
5
0
18 Apr 2024
LTAU-FF: Loss Trajectory Analysis for Uncertainty in Atomistic Force Fields
Joshua A. Vita
Amit Samanta
Fei Zhou
Vincenzo Lordi
65
3
0
01 Feb 2024
Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic potentials
Viktor Zaverkin
David Holzmüller
Henrik Christiansen
Federico Errica
Francesco Alesiani
Makoto Takamoto
Mathias Niepert
Johannes Kastner
AI4CE
84
19
0
03 Dec 2023
Thermally Averaged Magnetic Anisotropy Tensors via Machine Learning Based on Gaussian Moments
Viktor Zaverkin
Julia Netz
Fabian Zills
Andreas Köhn
Johannes Kastner
AI4CE
49
18
0
03 Dec 2023
Predicting Properties of Periodic Systems from Cluster Data: A Case Study of Liquid Water
Viktor Zaverkin
David Holzmüller
Robin Schuldt
Johannes Kastner
68
18
0
03 Dec 2023
From Peptides to Nanostructures: A Euclidean Transformer for Fast and Stable Machine Learned Force Fields
J. Frank
Oliver T. Unke
Klaus-Robert Muller
Stefan Chmiela
69
3
0
21 Sep 2023
Scaling Spherical CNNs
Carlos Esteves
Jean-Jacques E. Slotine
A. Makadia
GNN
LRM
85
14
0
08 Jun 2023
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
Kristof T. Schütt
Stefaan S. P. Hessmann
Niklas W. A. Gebauer
Jonas Lederer
M. Gastegger
83
65
0
11 Dec 2022
Transfer learning for chemically accurate interatomic neural network potentials
Viktor Zaverkin
David Holzmüller
Luca Bonfirraro
Johannes Kastner
101
25
0
07 Dec 2022
Edge Direction-invariant Graph Neural Networks for Molecular Dipole Moments Prediction
Yang Jeong Park
GNN
30
1
0
26 Jun 2022
So3krates: Equivariant attention for interactions on arbitrary length-scales in molecular systems
J. Frank
Oliver T. Unke
Klaus-Robert Muller
89
44
0
28 May 2022
Accurate Machine Learned Quantum-Mechanical Force Fields for Biomolecular Simulations
Oliver T. Unke
M. Stohr
Stefan Ganscha
Thomas Unterthiner
Hartmut Maennel
...
Daniel Ahlin
M. Gastegger
L. M. Sandonas
A. Tkatchenko
Klaus-Robert Muller
AI4CE
70
18
0
17 May 2022
Accurate Molecular-Orbital-Based Machine Learning Energies via Unsupervised Clustering of Chemical Space
Lixue Cheng
Jiace Sun
Thomas F. Miller
48
13
0
21 Apr 2022
Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments
Viktor Zaverkin
David Holzmüller
Ingo Steinwart
Johannes Kastner
72
21
0
20 Sep 2021
Inverse design of 3d molecular structures with conditional generative neural networks
Niklas W. A. Gebauer
M. Gastegger
Stefaan S. P. Hessmann
Klaus-Robert Muller
Kristof T. Schütt
AI4CE
259
180
0
10 Sep 2021
Training Algorithm Matters for the Performance of Neural Network Potential: A Case Study of Adam and the Kalman Filter Optimizers
Yunqi Shao
Florian M. Dietrich
Carl Nettelblad
Chao Zhang
37
12
0
08 Sep 2021
Detect the Interactions that Matter in Matter: Geometric Attention for Many-Body Systems
Thorben Frank
Stefan Chmiela
60
3
0
04 Jun 2021
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
234
255
0
01 May 2021
Equivariant message passing for the prediction of tensorial properties and molecular spectra
Kristof T. Schütt
Oliver T. Unke
M. Gastegger
118
545
0
05 Feb 2021
Machine learning of solvent effects on molecular spectra and reactions
M. Gastegger
Kristof T. Schütt
Klaus-Robert Muller
AI4CE
71
62
0
28 Oct 2020
Machine Learning Force Fields
Oliver T. Unke
Stefan Chmiela
H. E. Sauceda
M. Gastegger
I. Poltavsky
Kristof T. Schütt
A. Tkatchenko
K. Müller
AI4CE
143
940
0
14 Oct 2020
Machine Learning a Molecular Hamiltonian for Predicting Electron Dynamics
Harish S. Bhat
Karnamohit Ranka
Christine M Isborn
50
12
0
19 Jul 2020
Deep Learning for UV Absorption Spectra with SchNarc: First Steps Towards Transferability in Chemical Compound Space
Julia Westermayr
P. Marquetand
88
53
0
15 Jul 2020
Machine learning for electronically excited states of molecules
Julia Westermayr
P. Marquetand
71
266
0
10 Jul 2020
Committee neural network potentials control generalization errors and enable active learning
Christoph Schran
K. Brezina
O. Marsalek
53
131
0
02 Jun 2020
Machine learning and excited-state molecular dynamics
Julia Westermayr
P. Marquetand
AI4CE
61
56
0
28 May 2020
Autonomous discovery in the chemical sciences part I: Progress
Connor W. Coley
Natalie S. Eyke
K. Jensen
71
218
0
30 Mar 2020
Predicting molecular dipole moments by combining atomic partial charges and atomic dipoles
M. Veit
D. Wilkins
Yang Yang
R. DiStasio
Michele Ceriotti
68
94
0
27 Mar 2020
Automated discovery of a robust interatomic potential for aluminum
Justin S. Smith
B. Nebgen
N. Mathew
Jie Chen
Nicholas Lubbers
...
S. Tretiak
H. Nam
T. Germann
S. Fensin
K. Barros
46
83
0
10 Mar 2020
Combining SchNet and SHARC: The SchNarc machine learning approach for excited-state dynamics
Julia Westermayr
M. Gastegger
P. Marquetand
AI4CE
67
131
0
17 Feb 2020
Big-Data Science in Porous Materials: Materials Genomics and Machine Learning
Kevin Maik Jablonka
D. Ongari
S. M. Moosavi
B. Smit
AI4CE
85
365
0
18 Jan 2020
On-the-fly Prediction of Protein Hydration Densities and Free Energies using Deep Learning
A. Ghanbarpour
Amr H. Mahmoud
M. Lill
3DH
AI4CE
25
4
0
07 Jan 2020
Neural networks and kernel ridge regression for excited states dynamics of CH
2
_2
2
NH
2
+
_2^+
2
+
: From single-state to multi-state representations and multi-property machine learning models
Julia Westermayr
Felix A Faber
Anders S. Christensen
O. von Lilienfeld
P. Marquetand
39
40
0
18 Dec 2019
Machine learning for molecular simulation
Frank Noé
A. Tkatchenko
K. Müller
C. Clementi
AI4CE
90
668
0
07 Nov 2019
ProDyn0: Inferring calponin homology domain stretching behavior using graph neural networks
Ali Madani
Cyna R Shirazinejad
Jia Rui Ong
Hengameh Shams
M. Mofrad
42
0
0
22 Oct 2019
Learning Everywhere: A Taxonomy for the Integration of Machine Learning and Simulations
Geoffrey C. Fox
S. Jha
AI4CE
72
13
0
29 Sep 2019
Recurrent Neural Network-based Model for Accelerated Trajectory Analysis in AIMD Simulations
M. Eslamibidgoli
Mehrdad Mokhtari
M. Eikerling
61
13
0
23 Sep 2019
Regression-clustering for Improved Accuracy and Training Cost with Molecular-Orbital-Based Machine Learning
Lixue Cheng
Nikola B. Kovachki
Matthew Welborn
Thomas F. Miller
82
45
0
04 Sep 2019
Unifying machine learning and quantum chemistry -- a deep neural network for molecular wavefunctions
Kristof T. Schütt
M. Gastegger
A. Tkatchenko
K. Müller
R. Maurer
AI4CE
98
390
0
24 Jun 2019
Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules
Niklas W. A. Gebauer
M. Gastegger
Kristof T. Schütt
164
211
0
02 Jun 2019
Fast Neural Network Approach for Direct Covariant Forces Prediction in Complex Multi-Element Extended Systems
J. Mailoa
M. Kornbluth
Simon L. Batzner
G. Samsonidze
Stephen T Lam
Chris Ablitt
N. Molinari
Boris Kozinsky
79
54
0
07 May 2019
Learning Everywhere: Pervasive Machine Learning for Effective High-Performance Computation
Geoffrey C. Fox
J. Glazier
J. Kadupitiya
V. Jadhao
Minje Kim
...
Madhav Marathe
Abhijin Adiga
Jiangzhuo Chen
O. Beckstein
S. Jha
59
53
0
27 Feb 2019
Molecular Dynamics with Neural-Network Potentials
M. Gastegger
P. Marquetand
AI4CE
31
22
0
18 Dec 2018
A Preliminary Study of Neural Network-based Approximation for HPC Applications
Wenqian Dong
Luanzheng Guo
Dong Li
16
0
0
18 Dec 2018
Learning representations of molecules and materials with atomistic neural networks
Kristof T. Schütt
A. Tkatchenko
K. Müller
NAI
45
13
0
11 Dec 2018
Machine learning enables long time scale molecular photodynamics simulations
Julia Westermayr
M. Gastegger
M. Menger
Sebastian Mai
L. González
Marquetand
AI4CE
49
74
0
22 Nov 2018
Compressing physical properties of atomic species for improving predictive chemistry
John E. Herr
Kevin J Koh
Kun Yao
John A. Parkhill
AI4CE
55
20
0
31 Oct 2018
1
2
Next