Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.06057
Cited By
Joint Learning from Earth Observation and OpenStreetMap Data to Get Faster Better Semantic Maps
17 May 2017
Nicolas Audebert
Bertrand Le Saux
Sébastien Lefèvre
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Joint Learning from Earth Observation and OpenStreetMap Data to Get Faster Better Semantic Maps"
6 / 6 papers shown
Title
MapFormer: Boosting Change Detection by Using Pre-change Information
Maximilian Bernhard
Niklas Strauß
Matthias Schubert
27
6
0
31 Mar 2023
PP-LinkNet: Improving Semantic Segmentation of High Resolution Satellite Imagery with Multi-stage Training
An Tran
Ali Zonoozi
Jagannadan Varadarajan
Hannes Kruppa
SSeg
14
14
0
14 Oct 2020
SCG-Net: Self-Constructing Graph Neural Networks for Semantic Segmentation
Qinghui Liu
Michael C. Kampffmeyer
Robert Jenssen
Arnt-Børre Salberg
GNN
SSeg
20
10
0
03 Sep 2020
Machine-learned Regularization and Polygonization of Building Segmentation Masks
Stefano Zorzi
K. Bittner
Friedrich Fraundorfer
GAN
9
58
0
24 Jul 2020
OpenStreetMap: Challenges and Opportunities in Machine Learning and Remote Sensing
John E. Vargas-Muñoz
Shivangi Srivastava
D. Tuia
A. X. Falcão
13
104
0
13 Jul 2020
Dense Dilated Convolutions Merging Network for Semantic Mapping of Remote Sensing Images
Qinghui Liu
Michael C. Kampffmeyer
Robert Jenssen
Arnt-Børre Salberg
8
14
0
30 Aug 2019
1