ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.06243
  4. Cited By
Learning to Represent Haptic Feedback for Partially-Observable Tasks

Learning to Represent Haptic Feedback for Partially-Observable Tasks

17 May 2017
Jaeyong Sung
J. Salisbury
Ashutosh Saxena
    SSL
ArXivPDFHTML

Papers citing "Learning to Represent Haptic Feedback for Partially-Observable Tasks"

10 / 10 papers shown
Title
Deep Learning for Wireless Networked Systems: a joint
  Estimation-Control-Scheduling Approach
Deep Learning for Wireless Networked Systems: a joint Estimation-Control-Scheduling Approach
Zihuai Zhao
Wanchun Liu
Daniel E. Quevedo
Yonghui Li
Branka Vucetic
32
18
0
03 Oct 2022
Masked Imitation Learning: Discovering Environment-Invariant Modalities
  in Multimodal Demonstrations
Masked Imitation Learning: Discovering Environment-Invariant Modalities in Multimodal Demonstrations
Yilun Hao
Ruinan Wang
Zhangjie Cao
Zihan Wang
Yuchen Cui
Dorsa Sadigh
33
2
0
16 Sep 2022
Interpretability in Contact-Rich Manipulation via Kinodynamic Images
Interpretability in Contact-Rich Manipulation via Kinodynamic Images
Ioanna Mitsioni
Joonatan Mänttäri
Y. Karayiannidis
John Folkesson
Danica Kragic
FAtt
11
3
0
23 Feb 2021
Learning Dense Rewards for Contact-Rich Manipulation Tasks
Learning Dense Rewards for Contact-Rich Manipulation Tasks
Zheng Wu
Wenzhao Lian
Vaibhav Unhelkar
Masayoshi Tomizuka
S. Schaal
8
37
0
17 Nov 2020
Making Sense of Vision and Touch: Learning Multimodal Representations
  for Contact-Rich Tasks
Making Sense of Vision and Touch: Learning Multimodal Representations for Contact-Rich Tasks
Michelle A. Lee
Yuke Zhu
Peter Zachares
Matthew Tan
K. Srinivasan
Silvio Savarese
Fei-Fei Li
Animesh Garg
Jeannette Bohg
SSL
23
208
0
28 Jul 2019
A Review of Robot Learning for Manipulation: Challenges,
  Representations, and Algorithms
A Review of Robot Learning for Manipulation: Challenges, Representations, and Algorithms
Oliver Kroemer
S. Niekum
George Konidaris
38
356
0
06 Jul 2019
Learning Latent Space Dynamics for Tactile Servoing
Learning Latent Space Dynamics for Tactile Servoing
Giovanni Sutanto
Nathan D. Ratliff
Rui Luo
Yaodong Yang
Yixiao Liu
Ankur Handa
Dieter Fox
14
31
0
08 Nov 2018
Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal
  Representations for Contact-Rich Tasks
Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks
Michelle A. Lee
Yuke Zhu
K. Srinivasan
Parth Shah
Silvio Savarese
Li Fei-Fei
Animesh Garg
Jeannette Bohg
SSL
32
368
0
24 Oct 2018
Learning to Grasp Without Seeing
Learning to Grasp Without Seeing
Adithyavairavan Murali
Yin Li
Dhiraj Gandhi
Abhinav Gupta
SSL
30
62
0
10 May 2018
Learning Awareness Models
Learning Awareness Models
Brandon Amos
Laurent Dinh
Serkan Cabi
Thomas Rothörl
Sergio Gomez Colmenarejo
Alistair Muldal
Tom Erez
Yuval Tassa
Nando de Freitas
Misha Denil
29
44
0
17 Apr 2018
1