ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.07420
27
14

Large-Scale Classification of Structured Objects using a CRF with Deep Class Embedding

21 May 2017
Eran Goldman
Jacob Goldberger
    BDL
ArXivPDFHTML
Abstract

This paper presents a novel deep learning architecture to classify structured objects in datasets with a large number of visually similar categories. We model sequences of images as linear-chain CRFs, and jointly learn the parameters from both local-visual features and neighboring classes. The visual features are computed by convolutional layers, and the class embeddings are learned by factorizing the CRF pairwise potential matrix. This forms a highly nonlinear objective function which is trained by optimizing a local likelihood approximation with batch-normalization. This model overcomes the difficulties of existing CRF methods to learn the contextual relationships thoroughly when there is a large number of classes and the data is sparse. The performance of the proposed method is illustrated on a huge dataset that contains images of retail-store product displays, taken in varying settings and viewpoints, and shows significantly improved results compared to linear CRF modeling and unnormalized likelihood optimization.

View on arXiv
Comments on this paper