14
146

From optimal transport to generative modeling: the VEGAN cookbook

Abstract

We study unsupervised generative modeling in terms of the optimal transport (OT) problem between true (but unknown) data distribution PXP_X and the latent variable model distribution PGP_G. We show that the OT problem can be equivalently written in terms of probabilistic encoders, which are constrained to match the posterior and prior distributions over the latent space. When relaxed, this constrained optimization problem leads to a penalized optimal transport (POT) objective, which can be efficiently minimized using stochastic gradient descent by sampling from PXP_X and PGP_G. We show that POT for the 2-Wasserstein distance coincides with the objective heuristically employed in adversarial auto-encoders (AAE) (Makhzani et al., 2016), which provides the first theoretical justification for AAEs known to the authors. We also compare POT to other popular techniques like variational auto-encoders (VAE) (Kingma and Welling, 2014). Our theoretical results include (a) a better understanding of the commonly observed blurriness of images generated by VAEs, and (b) establishing duality between Wasserstein GAN (Arjovsky and Bottou, 2017) and POT for the 1-Wasserstein distance.

View on arXiv
Comments on this paper