ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.07642
  4. Cited By
From optimal transport to generative modeling: the VEGAN cookbook

From optimal transport to generative modeling: the VEGAN cookbook

22 May 2017
Olivier Bousquet
Sylvain Gelly
Ilya O. Tolstikhin
Carl-Johann Simon-Gabriel
B. Schoelkopf
    OT
ArXivPDFHTML

Papers citing "From optimal transport to generative modeling: the VEGAN cookbook"

23 / 23 papers shown
Title
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
89
1
0
25 Nov 2024
Imitation from Diverse Behaviors: Wasserstein Quality Diversity Imitation Learning with Single-Step Archive Exploration
Imitation from Diverse Behaviors: Wasserstein Quality Diversity Imitation Learning with Single-Step Archive Exploration
Xingrui Yu
Zhenglin Wan
David Mark Bossens
Yueming Lyu
Qing-Wu Guo
Ivor W. Tsang
127
0
0
11 Nov 2024
Accelerating Sinkhorn Algorithm with Sparse Newton Iterations
Accelerating Sinkhorn Algorithm with Sparse Newton Iterations
Xun Tang
Michael Shavlovsky
Holakou Rahmanian
Elisa Tardini
K. K. Thekumparampil
Tesi Xiao
Lexing Ying
OT
33
4
0
20 Jan 2024
Differentially Private Gradient Flow based on the Sliced Wasserstein Distance
Differentially Private Gradient Flow based on the Sliced Wasserstein Distance
Ilana Sebag
Muni Sreenivas Pydi
Jean-Yves Franceschi
Alain Rakotomamonjy
Mike Gartrell
Jamal Atif
Alexandre Allauzen
24
2
0
13 Dec 2023
On Certified Generalization in Structured Prediction
On Certified Generalization in Structured Prediction
Bastian Boll
Christoph Schnörr
21
0
0
15 Jun 2023
The Monge Gap: A Regularizer to Learn All Transport Maps
The Monge Gap: A Regularizer to Learn All Transport Maps
Théo Uscidda
Marco Cuturi
OT
50
26
0
09 Feb 2023
Auto-Encoding Goodness of Fit
Auto-Encoding Goodness of Fit
A. Palmer
Zhiyi Chi
Derek Aguiar
J. Bi
35
1
0
12 Oct 2022
InfoOT: Information Maximizing Optimal Transport
InfoOT: Information Maximizing Optimal Transport
Ching-Yao Chuang
Stefanie Jegelka
David Alvarez-Melis
OT
35
12
0
06 Oct 2022
Don't Generate Me: Training Differentially Private Generative Models
  with Sinkhorn Divergence
Don't Generate Me: Training Differentially Private Generative Models with Sinkhorn Divergence
Tianshi Cao
Alex Bie
Arash Vahdat
Sanja Fidler
Karsten Kreis
SyDa
DiffM
11
71
0
01 Nov 2021
Learning and Inference in Imaginary Noise Models
Learning and Inference in Imaginary Noise Models
Saeed Saremi
BDL
DRL
6
2
0
18 May 2020
Physarum Powered Differentiable Linear Programming Layers and
  Applications
Physarum Powered Differentiable Linear Programming Layers and Applications
Zihang Meng
Sathya Ravi
Vikas Singh
19
5
0
30 Apr 2020
Statistical and Topological Properties of Sliced Probability Divergences
Statistical and Topological Properties of Sliced Probability Divergences
Kimia Nadjahi
Alain Durmus
Lénaïc Chizat
Soheil Kolouri
Shahin Shahrampour
Umut Simsekli
24
80
0
12 Mar 2020
Rate-Regularization and Generalization in VAEs
Rate-Regularization and Generalization in VAEs
Alican Bozkurt
Babak Esmaeili
Jean-Baptiste Tristan
Dana H. Brooks
Jennifer G. Dy
Jan Willem van de Meent
DRL
22
7
0
11 Nov 2019
A gradual, semi-discrete approach to generative network training via
  explicit Wasserstein minimization
A gradual, semi-discrete approach to generative network training via explicit Wasserstein minimization
Yucheng Chen
Matus Telgarsky
Chao Zhang
Bolton Bailey
Daniel J. Hsu
Jian-wei Peng
GAN
OT
16
17
0
08 Jun 2019
Deep Generative Learning via Variational Gradient Flow
Deep Generative Learning via Variational Gradient Flow
Yuan Gao
Yuling Jiao
Yang Wang
Yao Wang
Can Yang
Shunkang Zhang
19
36
0
24 Jan 2019
Conditional deep surrogate models for stochastic, high-dimensional, and
  multi-fidelity systems
Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems
Yibo Yang
P. Perdikaris
SyDa
BDL
AI4CE
21
55
0
15 Jan 2019
Towards Optimal Transport with Global Invariances
Towards Optimal Transport with Global Invariances
David Alvarez-Melis
Stefanie Jegelka
Tommi Jaakkola
OT
20
71
0
25 Jun 2018
Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal
  Transport and Diffusions
Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions
Antoine Liutkus
Umut Simsekli
Szymon Majewski
Alain Durmus
Fabian-Robert Stöter
DiffM
32
119
0
21 Jun 2018
Autoregressive Quantile Networks for Generative Modeling
Autoregressive Quantile Networks for Generative Modeling
Georg Ostrovski
Will Dabney
Rémi Munos
DRL
20
85
0
14 Jun 2018
Deep Generative Models in the Real-World: An Open Challenge from Medical
  Imaging
Deep Generative Models in the Real-World: An Open Challenge from Medical Imaging
Xiaoran Chen
Nick Pawlowski
Martin Rajchl
Ben Glocker
E. Konukoglu
OOD
MedIm
19
49
0
14 Jun 2018
A unified framework for hard and soft clustering with regularized
  optimal transport
A unified framework for hard and soft clustering with regularized optimal transport
Jean-Frédéric Diebold
Nicolas Papadakis
Arnaud Dessein
Charles-Alban Deledalle
FedML
47
9
0
12 Nov 2017
GAN and VAE from an Optimal Transport Point of View
GAN and VAE from an Optimal Transport Point of View
Aude Genevay
Gabriel Peyré
Marco Cuturi
OT
DRL
26
62
0
06 Jun 2017
Learning Generative Models with Sinkhorn Divergences
Learning Generative Models with Sinkhorn Divergences
Aude Genevay
Gabriel Peyré
Marco Cuturi
OT
39
617
0
01 Jun 2017
1