Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.07874
Cited By
A Unified Approach to Interpreting Model Predictions
22 May 2017
Scott M. Lundberg
Su-In Lee
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Unified Approach to Interpreting Model Predictions"
22 / 1,822 papers shown
Title
Minerva: A File-Based Ransomware Detector
Dorjan Hitaj
Giulio Pagnotta
Fabio De Gaspari
Lorenzo De Carli
L. Mancini
AAML
35
9
0
26 Jan 2023
Explaining Quantum Circuits with Shapley Values: Towards Explainable Quantum Machine Learning
R. Heese
Thore Gerlach
Sascha Mucke
Sabine Muller
Matthias Jakobs
Nico Piatkowski
33
18
0
22 Jan 2023
Measuring the Driving Forces of Predictive Performance: Application to Credit Scoring
Hué Sullivan
Hurlin Christophe
Pérignon Christophe
Saurin Sébastien
42
0
0
12 Dec 2022
Psychophysiology-aided Perceptually Fluent Speech Analysis of Children Who Stutter
Yi Xiao
Harshit Sharma
V. Tumanova
Asif Salekin
82
0
0
16 Nov 2022
Care for the Mind Amid Chronic Diseases: An Interpretable AI Approach Using IoT
Jiaheng Xie
Xiaohang Zhao
Xiang Liu
Xiao Fang
OOD
90
2
0
08 Nov 2022
VISTANet: VIsual Spoken Textual Additive Net for Interpretable Multimodal Emotion Recognition
Puneet Kumar
Sarthak Malik
Balasubramanian Raman
Xiaobai Li
81
2
0
24 Aug 2022
Navigating Neural Space: Revisiting Concept Activation Vectors to Overcome Directional Divergence
Frederik Pahde
Maximilian Dreyer
Leander Weber
Moritz Weckbecker
Christopher J. Anders
Thomas Wiegand
Wojciech Samek
Sebastian Lapuschkin
87
9
0
07 Feb 2022
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
Satyapriya Krishna
Tessa Han
Alex Gu
Steven Wu
S. Jabbari
Himabindu Lakkaraju
221
190
0
03 Feb 2022
Uncovering the Dark Side of Telegram: Fakes, Clones, Scams, and Conspiracy Movements
Massimo La Morgia
Alessandro Mei
Alberto Maria Mongardini
Jie Wu
28
21
0
26 Nov 2021
Rule Generation for Classification: Scalability, Interpretability, and Fairness
Tabea E. Rober
Adia C. Lumadjeng
M. Akyuz
cS. .Ilker Birbil
78
2
0
21 Apr 2021
On the Tractability of SHAP Explanations
Guy Van den Broeck
A. Lykov
Maximilian Schleich
Dan Suciu
FAtt
TDI
45
266
0
18 Sep 2020
SNoRe: Scalable Unsupervised Learning of Symbolic Node Representations
Sebastian Mežnar
Nada Lavrac
Blaž Škrlj
54
5
0
08 Sep 2020
Explainability in Deep Reinforcement Learning
Alexandre Heuillet
Fabien Couthouis
Natalia Díaz Rodríguez
XAI
91
279
0
15 Aug 2020
Explaining Naive Bayes and Other Linear Classifiers with Polynomial Time and Delay
Sasha Rubin
Thomas Gerspacher
Martin C. Cooper
Alexey Ignatiev
Nina Narodytska
FAtt
39
61
0
13 Aug 2020
How Much Can I Trust You? -- Quantifying Uncertainties in Explaining Neural Networks
Kirill Bykov
Marina M.-C. Höhne
Klaus-Robert Muller
Shinichi Nakajima
Marius Kloft
UQCV
FAtt
53
31
0
16 Jun 2020
Explainable AI for a No-Teardown Vehicle Component Cost Estimation: A Top-Down Approach
A. Moawad
E. Islam
Namdoo Kim
R. Vijayagopal
A. Rousseau
Wei Biao Wu
44
5
0
15 Jun 2020
SurvLIME: A method for explaining machine learning survival models
M. Kovalev
Lev V. Utkin
E. Kasimov
161
90
0
18 Mar 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
78
82
0
17 Mar 2020
A Supervised Machine Learning Model For Imputing Missing Boarding Stops In Smart Card Data
Nadav Shalit
Michael Fire
Eran Ben-Elia
110
4
0
10 Mar 2020
Two Decades of AI4NETS-AI/ML for Data Networks: Challenges & Research Directions
P. Casas
GNN
28
8
0
03 Mar 2020
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
82
3,848
0
10 Apr 2017
Not Just a Black Box: Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Shcherbina
A. Kundaje
FAtt
40
782
0
05 May 2016
Previous
1
2
3
...
35
36
37