Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.11107
Cited By
Information Theoretic Properties of Markov Random Fields, and their Algorithmic Applications
31 May 2017
Linus Hamilton
Frederic Koehler
Ankur Moitra
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Information Theoretic Properties of Markov Random Fields, and their Algorithmic Applications"
26 / 26 papers shown
Title
Learning Juntas under Markov Random Fields
Gautam Chandrasekaran
Adam R. Klivans
33
0
0
01 Jun 2025
One-Shot Learning for k-SAT
Andreas Galanis
Leslie Ann Goldberg
Xusheng Zhang
65
0
0
10 Feb 2025
Efficient Hamiltonian, structure and trace distance learning of Gaussian states
Marco Fanizza
Cambyse Rouzé
Daniel Stilck França
85
6
0
05 Nov 2024
Discrete distributions are learnable from metastable samples
Abhijith Jayakumar
A. Lokhov
Sidhant Misra
Marc Vuffray
222
1
0
17 Oct 2024
Structure learning of Hamiltonians from real-time evolution
Ainesh Bakshi
Allen Liu
Ankur Moitra
Ewin Tang
102
14
0
30 Apr 2024
Estimating the interaction graph of stochastic neuronal dynamics by observing only pairs of neurons
E. Santis
A. Galves
G. Nappo
M. Piccioni
32
5
0
14 Jun 2021
Outlier-Robust Learning of Ising Models Under Dobrushin's Condition
Ilias Diakonikolas
D. Kane
Alistair Stewart
Yuxin Sun
77
16
0
03 Feb 2021
Sample-Optimal and Efficient Learning of Tree Ising models
C. Daskalakis
Qinxuan Pan
64
8
0
28 Oct 2020
Estimation in Tensor Ising Models
Somabha Mukherjee
Jaesung Son
B. Bhattacharya
77
12
0
29 Aug 2020
Parameter Estimation for Undirected Graphical Models with Hard Constraints
B. Bhattacharya
K. Ramanan
78
2
0
22 Aug 2020
Learning of Discrete Graphical Models with Neural Networks
Abhijith Jayakumar
A. Lokhov
Sidhant Misra
Marc Vuffray
CML
60
8
0
21 Jun 2020
Robust Estimation of Tree Structured Ising Models
A. Katiyar
Vatsal Shah
Constantine Caramanis
TPM
64
10
0
10 Jun 2020
Learning Restricted Boltzmann Machines with Sparse Latent Variables
Guy Bresler
Rares-Darius Buhai
42
2
0
07 Jun 2020
Hardness of Identity Testing for Restricted Boltzmann Machines and Potts models
Antonio Blanca
Zongchen Chen
Daniel Stefankovic
Eric Vigoda
55
4
0
22 Apr 2020
Learning Ising models from one or multiple samples
Y. Dagan
C. Daskalakis
Nishanth Dikkala
Anthimos Vardis Kandiros
66
10
0
20 Apr 2020
Logistic-Regression with peer-group effects via inference in higher order Ising models
C. Daskalakis
Nishanth Dikkala
Ioannis Panageas
57
11
0
18 Mar 2020
Privately Learning Markov Random Fields
Huanyu Zhang
Gautam Kamath
Janardhan Kulkarni
Zhiwei Steven Wu
88
25
0
21 Feb 2020
Regression from Dependent Observations
C. Daskalakis
Nishanth Dikkala
Ioannis Panageas
89
30
0
08 May 2019
Learning Ising Models with Independent Failures
Surbhi Goel
D. Kane
Adam R. Klivans
55
16
0
13 Feb 2019
Efficient Learning of Discrete Graphical Models
Marc Vuffray
Sidhant Misra
A. Lokhov
61
35
0
02 Feb 2019
Lower bounds for testing graphical models: colorings and antiferromagnetic Ising models
Ivona Bezáková
Antonio Blanca
Zongchen Chen
Daniel Stefankovic
Eric Vigoda
88
20
0
22 Jan 2019
Sparse Logistic Regression Learns All Discrete Pairwise Graphical Models
Shanshan Wu
Sujay Sanghavi
A. Dimakis
82
51
0
28 Oct 2018
The Minimax Learning Rates of Normal and Ising Undirected Graphical Models
Luc Devroye
Abbas Mehrabian
Tommy Reddad
63
30
0
18 Jun 2018
Learning Restricted Boltzmann Machines via Influence Maximization
Guy Bresler
Frederic Koehler
Ankur Moitra
Elchanan Mossel
AI4CE
70
29
0
25 May 2018
Learning Graphical Models Using Multiplicative Weights
Adam R. Klivans
Raghu Meka
90
113
0
20 Jun 2017
Testing Ising Models
C. Daskalakis
Nishanth Dikkala
Gautam Kamath
129
101
0
09 Dec 2016
1