387
v1v2v3 (latest)

Lower Bounds on Regret for Noisy Gaussian Process Bandit Optimization

Annual Conference Computational Learning Theory (COLT), 2017
Abstract

In this paper, we consider the problem of sequentially optimizing a black-box function ff based on noisy samples and bandit feedback. We assume that ff is smooth in the sense of having a bounded norm in some reproducing kernel Hilbert space (RKHS), yielding a commonly-considered non-Bayesian form of Gaussian process bandit optimization. We provide algorithm-independent lower bounds on the simple regret, measuring the suboptimality of a single point reported after TT rounds, and on the cumulative regret, measuring the sum of regrets over the TT chosen points. For the isotropic squared-exponential kernel in dd dimensions, we find that an average simple regret of ϵ\epsilon requires T=Ω(1ϵ2(log1ϵ)d/2)T = \Omega\big(\frac{1}{\epsilon^2} (\log\frac{1}{\epsilon})^{d/2}\big), and the average cumulative regret is at least Ω(T(logT)d/2)\Omega\big( \sqrt{T(\log T)^{d/2}} \big), thus matching existing upper bounds up to the replacement of d/2d/2 by 2d+O(1)2d+O(1) in both cases. For the Mat\érn-ν\nu kernel, we give analogous bounds of the form Ω((1ϵ)2+d/ν)\Omega\big( (\frac{1}{\epsilon})^{2+d/\nu}\big) and Ω(Tν+d2ν+d)\Omega\big( T^{\frac{\nu + d}{2\nu + d}} \big), and discuss the resulting gaps to the existing upper bounds.

View on arXiv
Comments on this paper