ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.00090
  4. Cited By
Lower Bounds on Regret for Noisy Gaussian Process Bandit Optimization

Lower Bounds on Regret for Noisy Gaussian Process Bandit Optimization

31 May 2017
Jonathan Scarlett
Ilija Bogunovic
V. Cevher
ArXivPDFHTML

Papers citing "Lower Bounds on Regret for Noisy Gaussian Process Bandit Optimization"

25 / 25 papers shown
Title
Improved Regret Analysis in Gaussian Process Bandits: Optimality for Noiseless Reward, RKHS norm, and Non-Stationary Variance
S. Iwazaki
Shion Takeno
78
1
0
10 Feb 2025
Lower Bounds for Time-Varying Kernelized Bandits
Lower Bounds for Time-Varying Kernelized Bandits
Xu Cai
Jonathan Scarlett
36
0
0
22 Oct 2024
NeoRL: Efficient Exploration for Nonepisodic RL
NeoRL: Efficient Exploration for Nonepisodic RL
Bhavya Sukhija
Lenart Treven
Florian Dorfler
Stelian Coros
Andreas Krause
OffRL
41
0
0
03 Jun 2024
Sample Complexity of Kernel-Based Q-Learning
Sample Complexity of Kernel-Based Q-Learning
Sing-Yuan Yeh
Fu-Chieh Chang
Chang-Wei Yueh
Pei-Yuan Wu
A. Bernacchia
Sattar Vakili
OffRL
30
4
0
01 Feb 2023
Global Optimization with Parametric Function Approximation
Global Optimization with Parametric Function Approximation
Chong Liu
Yu-Xiang Wang
36
7
0
16 Nov 2022
Collaborative Learning in Kernel-based Bandits for Distributed Users
Collaborative Learning in Kernel-based Bandits for Distributed Users
Sudeep Salgia
Sattar Vakili
Qing Zhao
FedML
39
6
0
16 Jul 2022
Adjusted Expected Improvement for Cumulative Regret Minimization in
  Noisy Bayesian Optimization
Adjusted Expected Improvement for Cumulative Regret Minimization in Noisy Bayesian Optimization
Shouri Hu
Haowei Wang
Zhongxiang Dai
K. H. Low
Szu Hui Ng
33
4
0
10 May 2022
Instance-Dependent Regret Analysis of Kernelized Bandits
Instance-Dependent Regret Analysis of Kernelized Bandits
S. Shekhar
T. Javidi
27
3
0
12 Mar 2022
Efficient Kernel UCB for Contextual Bandits
Efficient Kernel UCB for Contextual Bandits
Houssam Zenati
A. Bietti
Eustache Diemert
Julien Mairal
Matthieu Martin
Pierre Gaillard
21
3
0
11 Feb 2022
Improved Convergence Rates for Sparse Approximation Methods in
  Kernel-Based Learning
Improved Convergence Rates for Sparse Approximation Methods in Kernel-Based Learning
Sattar Vakili
Jonathan Scarlett
Da-shan Shiu
A. Bernacchia
33
18
0
08 Feb 2022
Misspecified Gaussian Process Bandit Optimization
Misspecified Gaussian Process Bandit Optimization
Ilija Bogunovic
Andreas Krause
57
42
0
09 Nov 2021
Nearly Optimal Algorithms for Level Set Estimation
Nearly Optimal Algorithms for Level Set Estimation
Blake Mason
Romain Camilleri
Subhojyoti Mukherjee
Kevin G. Jamieson
Robert D. Nowak
Lalit P. Jain
30
22
0
02 Nov 2021
Collaborative Pure Exploration in Kernel Bandit
Collaborative Pure Exploration in Kernel Bandit
Yihan Du
Wei Chen
Yuko Kuroki
Longbo Huang
38
10
0
29 Oct 2021
Optimal Order Simple Regret for Gaussian Process Bandits
Optimal Order Simple Regret for Gaussian Process Bandits
Sattar Vakili
N. Bouziani
Sepehr Jalali
A. Bernacchia
Da-shan Shiu
31
51
0
20 Aug 2021
Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning
Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning
Barna Pásztor
Ilija Bogunovic
Andreas Krause
28
41
0
08 Jul 2021
Bayesian Optimistic Optimisation with Exponentially Decaying Regret
Bayesian Optimistic Optimisation with Exponentially Decaying Regret
Hung The Tran
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
16
3
0
10 May 2021
No-Regret Algorithms for Private Gaussian Process Bandit Optimization
No-Regret Algorithms for Private Gaussian Process Bandit Optimization
Abhimanyu Dubey
22
13
0
24 Feb 2021
Local Differential Privacy for Bayesian Optimization
Local Differential Privacy for Bayesian Optimization
Xingyu Zhou
Jian Tan
11
24
0
13 Oct 2020
On Information Gain and Regret Bounds in Gaussian Process Bandits
On Information Gain and Regret Bounds in Gaussian Process Bandits
Sattar Vakili
Kia Khezeli
Victor Picheny
GP
25
128
0
15 Sep 2020
Efficient Model-Based Reinforcement Learning through Optimistic Policy
  Search and Planning
Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning
Sebastian Curi
Felix Berkenkamp
Andreas Krause
33
82
0
15 Jun 2020
Random Hypervolume Scalarizations for Provable Multi-Objective Black Box
  Optimization
Random Hypervolume Scalarizations for Provable Multi-Objective Black Box Optimization
Daniel Golovin
Qiuyi Zhang
19
70
0
08 Jun 2020
Corruption-Tolerant Gaussian Process Bandit Optimization
Corruption-Tolerant Gaussian Process Bandit Optimization
Ilija Bogunovic
Andreas Krause
Jonathan Scarlett
30
51
0
04 Mar 2020
Multiscale Gaussian Process Level Set Estimation
Multiscale Gaussian Process Level Set Estimation
S. Shekhar
T. Javidi
32
17
0
26 Feb 2019
Tight Regret Bounds for Bayesian Optimization in One Dimension
Tight Regret Bounds for Bayesian Optimization in One Dimension
Jonathan Scarlett
38
27
0
30 May 2018
Truncated Variance Reduction: A Unified Approach to Bayesian
  Optimization and Level-Set Estimation
Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation
Ilija Bogunovic
Jonathan Scarlett
Andreas Krause
V. Cevher
72
89
0
24 Oct 2016
1