ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.00868
  4. Cited By
Active learning machine learns to create new quantum experiments
v1v2v3 (latest)

Active learning machine learns to create new quantum experiments

2 June 2017
A. Melnikov
Hendrik Poulsen Nautrup
Mario Krenn
Vedran Dunjko
M. Tiersch
A. Zeilinger
Hans J. Briegel
ArXiv (abs)PDFHTML

Papers citing "Active learning machine learns to create new quantum experiments"

13 / 63 papers shown
Title
Reinforcement Learning Decoders for Fault-Tolerant Quantum Computation
Reinforcement Learning Decoders for Fault-Tolerant Quantum Computation
R. Sweke
Markus S. Kesselring
E. van Nieuwenburg
Jens Eisert
AI4CELRM
74
111
0
16 Oct 2018
Discovering physical concepts with neural networks
Discovering physical concepts with neural networks
Raban Iten
Tony Metger
H. Wilming
L. D. Rio
R. Renner
PINNAI4CE
131
391
0
26 Jul 2018
Deep learning the high variability and randomness inside multimode
  fibres
Deep learning the high variability and randomness inside multimode fibres
Pengfei Fan
Tianrui Zhao
Lei Su
31
76
0
18 Jul 2018
A Generative Model for Inverse Design of Metamaterials
A Generative Model for Inverse Design of Metamaterials
Zhaocheng Liu
Dayu Zhu
S. Rodrigues
Kyu-Tae Lee
W. Cai
73
532
0
25 May 2018
Benchmarking projective simulation in navigation problems
Benchmarking projective simulation in navigation problems
A. Melnikov
A. Makmal
Hans J. Briegel
59
19
0
23 Apr 2018
A high-bias, low-variance introduction to Machine Learning for
  physicists
A high-bias, low-variance introduction to Machine Learning for physicists
Pankaj Mehta
Marin Bukov
Ching-Hao Wang
A. G. Day
C. Richardson
Charles K. Fisher
D. Schwab
AI4CE
133
885
0
23 Mar 2018
Taking gradients through experiments: LSTMs and memory proximal policy
  optimization for black-box quantum control
Taking gradients through experiments: LSTMs and memory proximal policy optimization for black-box quantum control
Moritz August
José Miguel Hernández-Lobato
73
41
0
12 Feb 2018
Enhanced Quantum Synchronization via Quantum Machine Learning
Enhanced Quantum Synchronization via Quantum Machine Learning
F. A. Cárdenas-López
M. Sanz
J. C. Retamal
Enrique Solano
34
12
0
25 Sep 2017
Quantum autoencoders via quantum adders with genetic algorithms
Quantum autoencoders via quantum adders with genetic algorithms
L. Lamata
U. Alvarez-Rodriguez
J. Martín-Guerrero
M. Sanz
Enrique Solano
103
76
0
21 Sep 2017
Machine learning \& artificial intelligence in the quantum domain
Machine learning \& artificial intelligence in the quantum domain
Vedran Dunjko
Hans J. Briegel
99
347
0
08 Sep 2017
Speeding-up the decision making of a learning agent using an ion trap
  quantum processor
Speeding-up the decision making of a learning agent using an ion trap quantum processor
T. Sriarunothai
S. Wölk
G. Giri
N. Friis
Vedran Dunjko
Hans J. Briegel
C. Wunderlich
114
40
0
05 Sep 2017
A Projective Simulation Scheme for Partially-Observable Multi-Agent
  Systems
A Projective Simulation Scheme for Partially-Observable Multi-Agent Systems
Rasoul Kheiri
52
0
0
29 Oct 2016
Projective simulation with generalization
Projective simulation with generalization
A. Melnikov
A. Makmal
Vedran Dunjko
Hans J. Briegel
98
42
0
09 Apr 2015
Previous
12