ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.04032
  4. Cited By
Modified Hamiltonian Monte Carlo for Bayesian inference

Modified Hamiltonian Monte Carlo for Bayesian inference

13 June 2017
Tijana Radivojević
E. Akhmatskaya
ArXivPDFHTML

Papers citing "Modified Hamiltonian Monte Carlo for Bayesian inference"

9 / 9 papers shown
Title
Compositional simulation-based inference for time series
Compositional simulation-based inference for time series
Manuel Gloeckler
S. Toyota
Kenji Fukumizu
Jakob H Macke
58
2
0
05 Nov 2024
Characterization of partial wetting by CMAS droplets using multiphase
  many-body dissipative particle dynamics and data-driven discovery based on
  PINNs
Characterization of partial wetting by CMAS droplets using multiphase many-body dissipative particle dynamics and data-driven discovery based on PINNs
Elham Kiyani
M. Kooshkbaghi
K. Shukla
R. Koneru
Zhen Li
L. Bravo
A. Ghoshal
George Karniadakis
M. Karttunen
AI4CE
39
4
0
18 Jul 2023
Adaptive multi-stage integration schemes for Hamiltonian Monte Carlo
Adaptive multi-stage integration schemes for Hamiltonian Monte Carlo
Lorenzo Nagar
Mario Fernández-Pendás
J. Sanz-Serna
E. Akhmatskaya
15
1
0
05 Jul 2023
Dynamic SIR/SEIR-like models comprising a time-dependent transmission
  rate: Hamiltonian Monte Carlo approach with applications to COVID-19
Dynamic SIR/SEIR-like models comprising a time-dependent transmission rate: Hamiltonian Monte Carlo approach with applications to COVID-19
Hristo Inouzhe
María Xosé Rodríguez-Álvarez
Lorenzo Nagar
E. Akhmatskaya
35
4
0
16 Jan 2023
Geometric Methods for Sampling, Optimisation, Inference and Adaptive
  Agents
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
38
25
0
20 Mar 2022
A Unifying and Canonical Description of Measure-Preserving Diffusions
A Unifying and Canonical Description of Measure-Preserving Diffusions
Alessandro Barp
So Takao
M. Betancourt
Alexis Arnaudon
Mark Girolami
31
17
0
06 May 2021
Post-Processing of MCMC
Post-Processing of MCMC
Leah F. South
M. Riabiz
Onur Teymur
Chris J. Oates
32
17
0
30 Mar 2021
A Neural Network MCMC sampler that maximizes Proposal Entropy
A Neural Network MCMC sampler that maximizes Proposal Entropy
Zengyi Li
Yubei Chen
Friedrich T. Sommer
34
14
0
07 Oct 2020
Markov Chain Importance Sampling -- a highly efficient estimator for
  MCMC
Markov Chain Importance Sampling -- a highly efficient estimator for MCMC
Ingmar Schuster
I. Klebanov
38
24
0
18 May 2018
1