Papers
Communities
Organizations
Events
Blog
Pricing
Feedback
Contact Sales
Search
Open menu
Home
Papers
1706.07564
Cited By
Least Squares Polynomial Chaos Expansion: A Review of Sampling Strategies
23 June 2017
M. Hadigol
Alireza Doostan
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Least Squares Polynomial Chaos Expansion: A Review of Sampling Strategies"
17 / 17 papers shown
Title
Discovering deposition process regimes: leveraging unsupervised learning for process insights, surrogate modeling, and sensitivity analysis
Geremy Loachamín Suntaxi
Paris Papavasileiou
E. D. Koronaki
Dimitrios G. Giovanis
G. Gakis
...
M. Kathrein
Gabriele Pozzetti
Christoph Czettl
Stéphane P. A. Bordas
A. Boudouvis
63
0
0
24 May 2024
Learning smooth functions in high dimensions: from sparse polynomials to deep neural networks
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
86
6
0
04 Apr 2024
Polynomial Chaos Expansions on Principal Geodesic Grassmannian Submanifolds for Surrogate Modeling and Uncertainty Quantification
Dimitris G. Giovanis
Dimitrios Loukrezis
Ioannis G. Kevrekidis
Michael D. Shields
128
5
0
30 Jan 2024
Enhancing Polynomial Chaos Expansion Based Surrogate Modeling using a Novel Probabilistic Transfer Learning Strategy
Wyatt Bridgman
Uma Balakrishnan
Reese E. Jones
Jiefu Chen
Xuqing Wu
Cosmin Safta
Yueqin Huang
Mohammad Khalil
55
0
0
07 Dec 2023
A Stable Jacobi polynomials based least squares regression estimator associated with an ANOVA decomposition model
Mohamed Jebalia
Abderrazek Karoui
31
0
0
04 Aug 2022
Sensitivity-enhanced generalized polynomial chaos for efficient uncertainty quantification
Kyriakos D. Kantarakias
G. Papadakis
17
9
0
30 Jun 2022
Learning "best" kernels from data in Gaussian process regression. With application to aerodynamics
J. Akian
L. Bonnet
H. Owhadi
Éric Savin
125
28
0
03 Jun 2022
A fully Bayesian sparse polynomial chaos expansion approach with joint priors on the coefficients and global selection of terms
Paul-Christian Bürkner
Ilja Kroker
S. Oladyshkin
Wolfgang Nowak
111
11
0
12 Apr 2022
On efficient algorithms for computing near-best polynomial approximations to high-dimensional, Hilbert-valued functions from limited samples
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
116
11
0
25 Mar 2022
On the influence of over-parameterization in manifold based surrogates and deep neural operators
Katiana Kontolati
S. Goswami
Michael D. Shields
George Karniadakis
134
44
0
09 Mar 2022
Nonintrusive Uncertainty Quantification for automotive crash problems with VPS/Pamcrash
M. Rocas
Alberto García-González
S. Zlotnik
X. Larráyoz
Pedro Díez
42
10
0
15 Feb 2021
Sparse Identification of Nonlinear Dynamical Systems via Reweighted
ℓ
1
\ell_1
ℓ
1
-regularized Least Squares
A. Cortiella
K. Park
Alireza Doostan
65
77
0
27 May 2020
Sparse Polynomial Chaos Expansions: Literature Survey and Benchmark
Nora Lüthen
S. Marelli
Bruno Sudret
169
171
0
04 Feb 2020
Learning Arbitrary Quantities of Interest from Expensive Black-Box Functions through Bayesian Sequential Optimal Design
Piyush Pandita
Nimish Awalgaonkar
Ilias Bilionis
Jitesh H. Panchal
97
1
0
16 Dec 2019
Sequential sampling for optimal weighted least squares approximations in hierarchical spaces
B. Arras
M. Bachmayr
A. Cohen
40
22
0
28 May 2018
Sparse Polynomial Chaos Expansions via Compressed Sensing and D-optimal Design
Paul Diaz
Alireza Doostan
Jerrad Hampton
94
102
0
29 Dec 2017
Basis Adaptive Sample Efficient Polynomial Chaos (BASE-PC)
Jerrad Hampton
Alireza Doostan
88
44
0
03 Feb 2017
1