ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.09529
  4. Cited By
Learning to Learn: Meta-Critic Networks for Sample Efficient Learning

Learning to Learn: Meta-Critic Networks for Sample Efficient Learning

29 June 2017
Flood Sung
Li Zhang
Tao Xiang
Timothy M. Hospedales
Yongxin Yang
    OffRL
ArXivPDFHTML

Papers citing "Learning to Learn: Meta-Critic Networks for Sample Efficient Learning"

17 / 17 papers shown
Title
Effective Regularization Through Loss-Function Metalearning
Effective Regularization Through Loss-Function Metalearning
Santiago Gonzalez
Risto Miikkulainen
56
5
0
02 Oct 2020
Meta-Reinforcement Learning Robust to Distributional Shift via Model
  Identification and Experience Relabeling
Meta-Reinforcement Learning Robust to Distributional Shift via Model Identification and Experience Relabeling
Russell Mendonca
Xinyang Geng
Chelsea Finn
Sergey Levine
OOD
OffRL
67
40
0
12 Jun 2020
Counterfactual Multi-Agent Policy Gradients
Counterfactual Multi-Agent Policy Gradients
Jakob N. Foerster
Gregory Farquhar
Triantafyllos Afouras
Nantas Nardelli
Shimon Whiteson
45
2,053
0
24 May 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
748
11,793
0
09 Mar 2017
Generalizing Skills with Semi-Supervised Reinforcement Learning
Generalizing Skills with Semi-Supervised Reinforcement Learning
Chelsea Finn
Tianhe Yu
Justin Fu
Pieter Abbeel
Sergey Levine
OffRL
SSL
46
68
0
01 Dec 2016
RL$^2$: Fast Reinforcement Learning via Slow Reinforcement Learning
RL2^22: Fast Reinforcement Learning via Slow Reinforcement Learning
Yan Duan
John Schulman
Xi Chen
Peter L. Bartlett
Ilya Sutskever
Pieter Abbeel
OffRL
59
1,011
0
09 Nov 2016
HyperNetworks
HyperNetworks
David R Ha
Andrew M. Dai
Quoc V. Le
100
1,603
0
27 Sep 2016
Learning feed-forward one-shot learners
Learning feed-forward one-shot learners
Luca Bertinetto
João F. Henriques
Jack Valmadre
Philip Torr
Andrea Vedaldi
48
470
0
16 Jun 2016
Learning to learn by gradient descent by gradient descent
Learning to learn by gradient descent by gradient descent
Marcin Andrychowicz
Misha Denil
Sergio Gomez Colmenarejo
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
74
2,000
0
14 Jun 2016
Matching Networks for One Shot Learning
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
264
7,286
0
13 Jun 2016
Learning to Optimize
Learning to Optimize
Ke Li
Jitendra Malik
38
256
0
06 Jun 2016
Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning
Volodymyr Mnih
Adria Puigdomenech Badia
M. Berk Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
157
8,805
0
04 Feb 2016
Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning
Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning
Emilio Parisotto
Jimmy Lei Ba
Ruslan Salakhutdinov
OffRL
58
594
0
19 Nov 2015
Continuous control with deep reinforcement learning
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
168
13,174
0
09 Sep 2015
High-Dimensional Continuous Control Using Generalized Advantage
  Estimation
High-Dimensional Continuous Control Using Generalized Advantage Estimation
John Schulman
Philipp Moritz
Sergey Levine
Michael I. Jordan
Pieter Abbeel
OffRL
35
3,368
0
08 Jun 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
175
19,448
0
09 Mar 2015
Learning Parameterized Skills
Learning Parameterized Skills
Bruno C. da Silva
George Konidaris
A. Barto
70
207
0
27 Jun 2012
1