Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.09916
Cited By
Graph Convolution: A High-Order and Adaptive Approach
29 June 2017
Zhenpeng Zhou
Xiaocheng Li
GNN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Graph Convolution: A High-Order and Adaptive Approach"
5 / 5 papers shown
Title
Simpler is better: Multilevel Abstraction with Graph Convolutional Recurrent Neural Network Cells for Traffic Prediction
Naghmeh Shafiee Roudbari
Zachary Patterson
Ursula Eicker
Charalambos (Charis) Poullis
GNN
AI4TS
11
2
0
08 Sep 2022
On the Inclusion of Spatial Information for Spatio-Temporal Neural Networks
Rodrigo de Medrano
J. Aznarte
26
15
0
15 Jul 2020
Constructing Geographic and Long-term Temporal Graph for Traffic Forecasting
Yiwen Sun
Yulu Wang
Kun Fu
Zheng Wang
Changshui Zhang
Jieping Ye
AI4TS
GNN
14
9
0
23 Apr 2020
Spatial Graph Convolutional Networks
Tomasz Danel
P. Spurek
Jacek Tabor
Marek Śmieja
Lukasz Struski
Agnieszka Słowik
Lukasz Maziarka
GNN
32
10
0
11 Sep 2019
Traffic Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting
Zhiyong Cui
Kristian C. Henrickson
Ruimin Ke
Ziyuan Pu
Yinhai Wang
GNN
AI4TS
33
736
0
20 Feb 2018
1