ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.00189
  4. Cited By
Content-Based Weak Supervision for Ad-Hoc Re-Ranking

Content-Based Weak Supervision for Ad-Hoc Re-Ranking

1 July 2017
Sean MacAvaney
Andrew Yates
Kai Hui
O. Frieder
ArXivPDFHTML

Papers citing "Content-Based Weak Supervision for Ad-Hoc Re-Ranking"

5 / 5 papers shown
Title
Domain Adaptation of Multilingual Semantic Search -- Literature Review
Domain Adaptation of Multilingual Semantic Search -- Literature Review
Anna Bringmann
Anastasia Zhukova
VLM
41
0
0
05 Feb 2024
Improving Neural Ranking Models with Traditional IR Methods
Improving Neural Ranking Models with Traditional IR Methods
Anik Saha
Oktie Hassanzadeh
Alex Gittens
Jian Ni
Kavitha Srinivas
B. Yener
14
1
0
29 Aug 2023
ABNIRML: Analyzing the Behavior of Neural IR Models
ABNIRML: Analyzing the Behavior of Neural IR Models
Sean MacAvaney
Sergey Feldman
Nazli Goharian
Doug Downey
Arman Cohan
15
49
0
02 Nov 2020
Pretrained Transformers for Text Ranking: BERT and Beyond
Pretrained Transformers for Text Ranking: BERT and Beyond
Jimmy J. Lin
Rodrigo Nogueira
Andrew Yates
VLM
239
611
0
13 Oct 2020
MultiCQA: Zero-Shot Transfer of Self-Supervised Text Matching Models on
  a Massive Scale
MultiCQA: Zero-Shot Transfer of Self-Supervised Text Matching Models on a Massive Scale
Andreas Rucklé
Jonas Pfeiffer
Iryna Gurevych
27
37
0
02 Oct 2020
1