Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1707.02641
Cited By
v1
v2
v3
v4
v5 (latest)
Automated versus do-it-yourself methods for causal inference: Lessons learned from a data analysis competition
9 July 2017
Vincent Dorie
J. Hill
Uri Shalit
M. Scott
D. Cervone
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Automated versus do-it-yourself methods for causal inference: Lessons learned from a data analysis competition"
50 / 113 papers shown
Title
Stochastic Tree Ensembles for Estimating Heterogeneous Effects
Nikolay M. Krantsevich
Jingyu He
P. R. Hahn
CML
85
13
0
15 Sep 2022
Normalizing Flows for Interventional Density Estimation
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
101
21
0
13 Sep 2022
Benchmarking Heterogeneous Treatment Effect Models through the Lens of Interpretability
Jonathan Crabbé
Alicia Curth
Ioana Bica
M. Schaar
CML
110
16
0
16 Jun 2022
Efficient Heterogeneous Treatment Effect Estimation With Multiple Experiments and Multiple Outcomes
Leon Yao
Caroline Lo
Israel Nir
S. Tan
Ariel Evnine
Adam Lerer
A. Peysakhovich
CML
57
7
0
10 Jun 2022
Comparison of meta-learners for estimating multi-valued treatment heterogeneous effects
Naoufal Acharki
Ramiro Lugo
A. Bertoncello
Josselin Garnier
CML
70
13
0
29 May 2022
Extraction of Visual Information to Predict Crowdfunding Success
Simon J. Blanchard
Theodore J. Noseworthy
E. Pancer
Maxwell Poole
33
10
0
28 Mar 2022
Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments
Kosuke Imai
Michael Lingzhi Li
CML
39
15
0
28 Mar 2022
Neural Score Matching for High-Dimensional Causal Inference
Oscar Clivio
Fabian Falck
B. Lehmann
George Deligiannidis
Chris Holmes
CML
66
8
0
01 Mar 2022
Estimating causal effects with optimization-based methods: A review and empirical comparison
Martin Cousineau
V. Verter
Susan Murphy
J. Pineau
CML
40
9
0
28 Feb 2022
Ensemble Method for Estimating Individualized Treatment Effects
K. Han
Hanghao Wu
CML
FedML
29
4
0
25 Feb 2022
Generalized Bayesian Additive Regression Trees Models: Beyond Conditional Conjugacy
A. Linero
79
10
0
20 Feb 2022
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling
Eustache Diemert
Artem Betlei
Christophe Renaudin
Massih-Reza Amini
T. Gregoir
Thibaud Rahier
CML
71
10
0
19 Nov 2021
ADCB: An Alzheimer's disease benchmark for evaluating observational estimators of causal effects
N. M. Kinyanjui
Fredrik D. Johansson
CML
45
0
0
12 Nov 2021
Positivity Validation Detection and Explainability via Zero Fraction Multi-Hypothesis Testing and Asymmetrically Pruned Decision Trees
Guy Wolf
G. Shabat
H. Shteingart
72
1
0
07 Nov 2021
Improved inference for doubly robust estimators of heterogeneous treatment effects
Hee-Choon Shin
Joseph Antonelli
56
4
0
05 Nov 2021
GeneDisco: A Benchmark for Experimental Design in Drug Discovery
Arash Mehrjou
Ashkan Soleymani
Andrew Jesson
Pascal Notin
Y. Gal
Stefan Bauer
Patrick Schwab
89
21
0
22 Oct 2021
Identifying Causal Influences on Publication Trends and Behavior: A Case Study of the Computational Linguistics Community
M. Glenski
Svitlana Volkova
CML
AI4CE
84
1
0
15 Oct 2021
A pragmatic approach to estimating average treatment effects from EHR data: the effect of prone positioning on mechanically ventilated COVID-19 patients
A. Izdebski
P. Thoral
R. Lalisang
Dean McHugh
D. Gommers
...
Rutger van Raalte
M. V. Tellingen
Niels C. Gritters van den Oever
Paul Elbers
Giovanni Cina
CML
48
0
0
14 Sep 2021
Doing Great at Estimating CATE? On the Neglected Assumptions in Benchmark Comparisons of Treatment Effect Estimators
Alicia Curth
M. Schaar
CML
49
7
0
28 Jul 2021
On Inductive Biases for Heterogeneous Treatment Effect Estimation
Alicia Curth
M. Schaar
CML
193
84
0
07 Jun 2021
Causal Decision Making and Causal Effect Estimation Are Not the Same... and Why It Matters
Carlos Fernández-Loría
F. Provost
CML
67
45
0
08 Apr 2021
Selecting Treatment Effects Models for Domain Adaptation Using Causal Knowledge
Trent Kyono
Ioana Bica
Zhaozhi Qian
Mihaela van der Schaar
OOD
CML
28
7
0
11 Feb 2021
Generating Synthetic Text Data to Evaluate Causal Inference Methods
Zach Wood-Doughty
I. Shpitser
Mark Dredze
SyDa
CML
68
11
0
10 Feb 2021
RealCause: Realistic Causal Inference Benchmarking
Brady Neal
Chin-Wei Huang
Sunand Raghupathi
CML
ELM
72
34
0
30 Nov 2020
Counterfactual Representation Learning with Balancing Weights
Serge Assaad
Shuxi Zeng
Chenyang Tao
Shounak Datta
Nikhil Mehta
Ricardo Henao
Fan Li
Lawrence Carin
CML
OOD
178
65
0
23 Oct 2020
How and Why to Use Experimental Data to Evaluate Methods for Observational Causal Inference
A. Gentzel
Purva Pruthi
David D. Jensen
CML
67
18
0
06 Oct 2020
Probabilistic Machine Learning for Healthcare
Irene Y. Chen
Shalmali Joshi
Marzyeh Ghassemi
Rajesh Ranganath
OOD
69
56
0
23 Sep 2020
Adjusting for Confounders with Text: Challenges and an Empirical Evaluation Framework for Causal Inference
Galen Cassebeer Weld
Peter West
M. Glenski
David Arbour
Ryan Rossi
Tim Althoff
CML
102
20
0
21 Sep 2020
Causal Rule Ensemble: Interpretable Discovery and Inference of Heterogeneous Treatment Effects
Falco J. Bargagli-Stoffi
Riccardo Cadei
Kwonsang Lee
Francesca Dominici
CML
58
16
0
18 Sep 2020
Estimating Individual Treatment Effects using Non-Parametric Regression Models: a Review
A. Caron
G. Baio
I. Manolopoulou
CML
94
56
0
14 Sep 2020
Estimating heterogeneous survival treatment effect in observational data using machine learning
Liangyuan Hu
Jiayi Ji
Fan Li
CML
94
67
0
17 Aug 2020
A unified survey of treatment effect heterogeneity modeling and uplift modeling
Weijia Zhang
Jiuyong Li
Lin Liu
CML
97
60
0
14 Jul 2020
Identifying Causal-Effect Inference Failure with Uncertainty-Aware Models
Andrew Jesson
Sören Mindermann
Uri Shalit
Y. Gal
CML
76
74
0
01 Jul 2020
Robust Recursive Partitioning for Heterogeneous Treatment Effects with Uncertainty Quantification
Hyun-Suk Lee
Yao Zhang
W. Zame
Cong Shen
Jang-Won Lee
M. Schaar
CML
41
19
0
14 Jun 2020
Conformal Inference of Counterfactuals and Individual Treatment Effects
Lihua Lei
Emmanuel J. Candès
CML
174
195
0
11 Jun 2020
Bayesian Probabilistic Numerical Integration with Tree-Based Models
Harrison Zhu
Xing Liu
Ruya Kang
Zhichao Shen
Seth Flaxman
F. Briol
TPM
42
5
0
09 Jun 2020
CausaLM: Causal Model Explanation Through Counterfactual Language Models
Amir Feder
Nadav Oved
Uri Shalit
Roi Reichart
CML
LRM
161
162
0
27 May 2020
Text and Causal Inference: A Review of Using Text to Remove Confounding from Causal Estimates
Katherine A. Keith
David D. Jensen
Brendan O'Connor
CML
68
114
0
01 May 2020
A Comparison of Methods for Treatment Assignment with an Application to Playlist Generation
Carlos Fernández-Loría
F. Provost
J. Anderton
Benjamin Carterette
Praveen Chandar
CML
61
19
0
24 Apr 2020
Sense and Sensitivity Analysis: Simple Post-Hoc Analysis of Bias Due to Unobserved Confounding
Victor Veitch
A. Zaveri
CML
170
52
0
03 Mar 2020
A Survey on Causal Inference
Liuyi Yao
Zhixuan Chu
Sheng Li
Yaliang Li
Jing Gao
Aidong Zhang
CML
117
516
0
05 Feb 2020
Treatment effect estimation with disentangled latent factors
Weijia Zhang
Lin Liu
Jiuyong Li
CML
99
89
0
29 Jan 2020
Response Transformation and Profit Decomposition for Revenue Uplift Modeling
R. M. Gubela
Stefan Lessmann
S. Jaroszewicz
OffRL
62
51
0
20 Nov 2019
The Case for Evaluating Causal Models Using Interventional Measures and Empirical Data
A. Gentzel
Dan Garant
David D. Jensen
CML
ELM
61
47
0
11 Oct 2019
Estimation of Bounds on Potential Outcomes For Decision Making
Maggie Makar
Fredrik D. Johansson
John Guttag
David Sontag
27
1
0
10 Oct 2019
Linear Aggregation in Tree-based Estimators
Sören R. Künzel
Theo Saarinen
Edward W. Liu
Jasjeet Sekhon
141
10
0
15 Jun 2019
The Secrets of Machine Learning: Ten Things You Wish You Had Known Earlier to be More Effective at Data Analysis
Cynthia Rudin
David Carlson
HAI
122
34
0
04 Jun 2019
An Evaluation Toolkit to Guide Model Selection and Cohort Definition in Causal Inference
Y. Shimoni
Ehud Karavani
Sivan Ravid
Peter Bak
Tan Hung Marie Ng
S. Alford
D. Meade
Yaara Goldschmidt
ELM
CML
73
38
0
02 Jun 2019
Heterogeneous causal effects with imperfect compliance: a Bayesian machine learning approach
Falco J. Bargagli-Stoffi
Kristof De-Witte
G. Gnecco
90
15
0
29 May 2019
Adversarial Balancing-based Representation Learning for Causal Effect Inference with Observational Data
Xin Du
Lei Sun
W. Duivesteijn
Alexander G. Nikolaev
Mykola Pechenizkiy
OOD
CML
79
44
0
30 Apr 2019
Previous
1
2
3
Next