Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1707.05970
Cited By
v1
v2
v3
v4
v5 (latest)
Generic Black-Box End-to-End Attack Against State of the Art API Call Based Malware Classifiers
19 July 2017
Ishai Rosenberg
A. Shabtai
Lior Rokach
Yuval Elovici
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Generic Black-Box End-to-End Attack Against State of the Art API Call Based Malware Classifiers"
20 / 20 papers shown
Title
Interactive Machine Learning: A State of the Art Review
Natnael A. Wondimu
Cédric Buche
U. Visser
VLM
HAI
99
10
0
13 Jul 2022
Universal Adversarial Examples and Perturbations for Quantum Classifiers
Weiyuan Gong
D. Deng
AAML
83
25
0
15 Feb 2021
Information Laundering for Model Privacy
Xinran Wang
Yu Xiang
Jun Gao
Jie Ding
34
24
0
13 Sep 2020
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
113
73
0
07 Aug 2020
A Framework for Enhancing Deep Neural Networks Against Adversarial Malware
Deqiang Li
Qianmu Li
Yanfang Ye
Shouhuai Xu
AAML
65
13
0
15 Apr 2020
Effectiveness of Adversarial Examples and Defenses for Malware Classification
Robert Podschwadt
Hassan Takabi
AAML
46
11
0
10 Sep 2019
FortuneTeller: Predicting Microarchitectural Attacks via Unsupervised Deep Learning
Berk Gülmezoglu
A. Moghimi
T. Eisenbarth
B. Sunar
AAML
66
38
0
08 Jul 2019
Adversarial Attacks on Deep Learning Models in Natural Language Processing: A Survey
W. Zhang
Quan Z. Sheng
A. Alhazmi
Chenliang Li
AAML
114
57
0
21 Jan 2019
Enhancing Robustness of Deep Neural Networks Against Adversarial Malware Samples: Principles, Framework, and AICS'2019 Challenge
Deqiang Li
Qianmu Li
Yanfang Ye
Shouhuai Xu
AAML
54
15
0
19 Dec 2018
Adversarial Examples - A Complete Characterisation of the Phenomenon
A. Serban
E. Poll
Joost Visser
SILM
AAML
102
49
0
02 Oct 2018
Adversarial Attacks and Defences: A Survey
Anirban Chakraborty
Manaar Alam
Vishal Dey
Anupam Chattopadhyay
Debdeep Mukhopadhyay
AAML
OOD
102
683
0
28 Sep 2018
HashTran-DNN: A Framework for Enhancing Robustness of Deep Neural Networks against Adversarial Malware Samples
Deqiang Li
Ramesh Baral
Tao Li
Han Wang
Qianmu Li
Shouhuai Xu
AAML
63
21
0
18 Sep 2018
MULDEF: Multi-model-based Defense Against Adversarial Examples for Neural Networks
Siwakorn Srisakaokul
Yuhao Zhang
Zexuan Zhong
Wei Yang
Tao Xie
Bo Li
AAML
75
19
0
31 Aug 2018
Android HIV: A Study of Repackaging Malware for Evading Machine-Learning Detection
Xiao Chen
Chaoran Li
Derui Wang
S. Wen
Jun Zhang
Surya Nepal
Yang Xiang
K. Ren
AAML
80
246
0
10 Aug 2018
BEBP: An Poisoning Method Against Machine Learning Based IDSs
Pan Li
Qiang Liu
Wentao Zhao
Dongxu Wang
Siqi Wang
AAML
46
6
0
11 Mar 2018
Deceiving End-to-End Deep Learning Malware Detectors using Adversarial Examples
Felix Kreuk
A. Barak
Shir Aviv-Reuven
Moran Baruch
Benny Pinkas
Joseph Keshet
AAML
75
118
0
13 Feb 2018
Learning to Evade Static PE Machine Learning Malware Models via Reinforcement Learning
Hyrum S. Anderson
Anant Kharkar
Bobby Filar
David Evans
P. Roth
AAML
90
210
0
26 Jan 2018
Adversarial Deep Learning for Robust Detection of Binary Encoded Malware
Abdullah Al-Dujaili
Alex Huang
Erik Hemberg
Una-May O’Reilly
AAML
107
188
0
09 Jan 2018
Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
Naveed Akhtar
Ajmal Mian
AAML
142
1,872
0
02 Jan 2018
Early Stage Malware Prediction Using Recurrent Neural Networks
Matilda Rhode
Pete Burnap
K. Jones
AAML
72
255
0
11 Aug 2017
1