ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.05970
  4. Cited By
Generic Black-Box End-to-End Attack Against State of the Art API Call
  Based Malware Classifiers
v1v2v3v4v5 (latest)

Generic Black-Box End-to-End Attack Against State of the Art API Call Based Malware Classifiers

19 July 2017
Ishai Rosenberg
A. Shabtai
Lior Rokach
Yuval Elovici
    AAML
ArXiv (abs)PDFHTML

Papers citing "Generic Black-Box End-to-End Attack Against State of the Art API Call Based Malware Classifiers"

20 / 20 papers shown
Title
Interactive Machine Learning: A State of the Art Review
Interactive Machine Learning: A State of the Art Review
Natnael A. Wondimu
Cédric Buche
U. Visser
VLMHAI
99
10
0
13 Jul 2022
Universal Adversarial Examples and Perturbations for Quantum Classifiers
Universal Adversarial Examples and Perturbations for Quantum Classifiers
Weiyuan Gong
D. Deng
AAML
83
25
0
15 Feb 2021
Information Laundering for Model Privacy
Information Laundering for Model Privacy
Xinran Wang
Yu Xiang
Jun Gao
Jie Ding
34
24
0
13 Sep 2020
Adversarial Examples on Object Recognition: A Comprehensive Survey
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
113
73
0
07 Aug 2020
A Framework for Enhancing Deep Neural Networks Against Adversarial
  Malware
A Framework for Enhancing Deep Neural Networks Against Adversarial Malware
Deqiang Li
Qianmu Li
Yanfang Ye
Shouhuai Xu
AAML
65
13
0
15 Apr 2020
Effectiveness of Adversarial Examples and Defenses for Malware
  Classification
Effectiveness of Adversarial Examples and Defenses for Malware Classification
Robert Podschwadt
Hassan Takabi
AAML
46
11
0
10 Sep 2019
FortuneTeller: Predicting Microarchitectural Attacks via Unsupervised
  Deep Learning
FortuneTeller: Predicting Microarchitectural Attacks via Unsupervised Deep Learning
Berk Gülmezoglu
A. Moghimi
T. Eisenbarth
B. Sunar
AAML
66
38
0
08 Jul 2019
Adversarial Attacks on Deep Learning Models in Natural Language
  Processing: A Survey
Adversarial Attacks on Deep Learning Models in Natural Language Processing: A Survey
W. Zhang
Quan Z. Sheng
A. Alhazmi
Chenliang Li
AAML
114
57
0
21 Jan 2019
Enhancing Robustness of Deep Neural Networks Against Adversarial Malware
  Samples: Principles, Framework, and AICS'2019 Challenge
Enhancing Robustness of Deep Neural Networks Against Adversarial Malware Samples: Principles, Framework, and AICS'2019 Challenge
Deqiang Li
Qianmu Li
Yanfang Ye
Shouhuai Xu
AAML
54
15
0
19 Dec 2018
Adversarial Examples - A Complete Characterisation of the Phenomenon
Adversarial Examples - A Complete Characterisation of the Phenomenon
A. Serban
E. Poll
Joost Visser
SILMAAML
102
49
0
02 Oct 2018
Adversarial Attacks and Defences: A Survey
Adversarial Attacks and Defences: A Survey
Anirban Chakraborty
Manaar Alam
Vishal Dey
Anupam Chattopadhyay
Debdeep Mukhopadhyay
AAMLOOD
102
683
0
28 Sep 2018
HashTran-DNN: A Framework for Enhancing Robustness of Deep Neural
  Networks against Adversarial Malware Samples
HashTran-DNN: A Framework for Enhancing Robustness of Deep Neural Networks against Adversarial Malware Samples
Deqiang Li
Ramesh Baral
Tao Li
Han Wang
Qianmu Li
Shouhuai Xu
AAML
63
21
0
18 Sep 2018
MULDEF: Multi-model-based Defense Against Adversarial Examples for
  Neural Networks
MULDEF: Multi-model-based Defense Against Adversarial Examples for Neural Networks
Siwakorn Srisakaokul
Yuhao Zhang
Zexuan Zhong
Wei Yang
Tao Xie
Bo Li
AAML
75
19
0
31 Aug 2018
Android HIV: A Study of Repackaging Malware for Evading Machine-Learning
  Detection
Android HIV: A Study of Repackaging Malware for Evading Machine-Learning Detection
Xiao Chen
Chaoran Li
Derui Wang
S. Wen
Jun Zhang
Surya Nepal
Yang Xiang
K. Ren
AAML
80
246
0
10 Aug 2018
BEBP: An Poisoning Method Against Machine Learning Based IDSs
BEBP: An Poisoning Method Against Machine Learning Based IDSs
Pan Li
Qiang Liu
Wentao Zhao
Dongxu Wang
Siqi Wang
AAML
46
6
0
11 Mar 2018
Deceiving End-to-End Deep Learning Malware Detectors using Adversarial
  Examples
Deceiving End-to-End Deep Learning Malware Detectors using Adversarial Examples
Felix Kreuk
A. Barak
Shir Aviv-Reuven
Moran Baruch
Benny Pinkas
Joseph Keshet
AAML
75
118
0
13 Feb 2018
Learning to Evade Static PE Machine Learning Malware Models via
  Reinforcement Learning
Learning to Evade Static PE Machine Learning Malware Models via Reinforcement Learning
Hyrum S. Anderson
Anant Kharkar
Bobby Filar
David Evans
P. Roth
AAML
90
210
0
26 Jan 2018
Adversarial Deep Learning for Robust Detection of Binary Encoded Malware
Adversarial Deep Learning for Robust Detection of Binary Encoded Malware
Abdullah Al-Dujaili
Alex Huang
Erik Hemberg
Una-May O’Reilly
AAML
107
188
0
09 Jan 2018
Threat of Adversarial Attacks on Deep Learning in Computer Vision: A
  Survey
Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
Naveed Akhtar
Ajmal Mian
AAML
142
1,872
0
02 Jan 2018
Early Stage Malware Prediction Using Recurrent Neural Networks
Early Stage Malware Prediction Using Recurrent Neural Networks
Matilda Rhode
Pete Burnap
K. Jones
AAML
72
255
0
11 Aug 2017
1