ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.00502
  4. Cited By
Estimation of the covariance structure of heavy-tailed distributions
v1v2v3 (latest)

Estimation of the covariance structure of heavy-tailed distributions

1 August 2017
Stanislav Minsker
Xiaohan Wei
ArXiv (abs)PDFHTML

Papers citing "Estimation of the covariance structure of heavy-tailed distributions"

25 / 25 papers shown
Title
Optimal Estimation of Structured Covariance Operators
Optimal Estimation of Structured Covariance Operators
Omar Al Ghattas
Jiaheng Chen
D. Sanz-Alonso
Nathan Waniorek
98
4
0
04 Aug 2024
Concentration and moment inequalities for heavy-tailed random matrices
Concentration and moment inequalities for heavy-tailed random matrices
M. Jirak
Stanislav Minsker
Yiqiu Shen
Martin Wahl
85
1
0
17 Jul 2024
Black-Box $k$-to-$1$-PCA Reductions: Theory and Applications
Black-Box kkk-to-111-PCA Reductions: Theory and Applications
A. Jambulapati
Syamantak Kumar
Jerry Li
Shourya Pandey
Ankit Pensia
Kevin Tian
61
3
0
06 Mar 2024
Pitfalls of Climate Network Construction: A Statistical Perspective
Pitfalls of Climate Network Construction: A Statistical Perspective
Moritz Haas
B. Goswami
U. V. Luxburg
55
4
0
05 Nov 2022
Quantitative limit theorems and bootstrap approximations for empirical
  spectral projectors
Quantitative limit theorems and bootstrap approximations for empirical spectral projectors
M. Jirak
Martin Wahl
72
4
0
26 Aug 2022
On Estimating Rank-One Spiked Tensors in the Presence of Heavy Tailed
  Errors
On Estimating Rank-One Spiked Tensors in the Presence of Heavy Tailed Errors
Arnab Auddy
M. Yuan
57
12
0
20 Jul 2021
Robust covariance estimation for distributed principal component
  analysis
Robust covariance estimation for distributed principal component analysis
Kangqiang Li
Han Bao
Lixin Zhang
45
6
0
14 Oct 2020
A generalized Catoni's ${\rm M}$-estimator under finite {$α$-th
  moment assumption} with $α\in (1,2)$
A generalized Catoni's M{\rm M}M-estimator under finite {ααα-th moment assumption} with α∈(1,2)α\in (1,2)α∈(1,2)
Peng Chen
Xinghu Jin
Xiang Li
Lihu Xu
62
25
0
10 Oct 2020
$β$-Cores: Robust Large-Scale Bayesian Data Summarization in the
  Presence of Outliers
βββ-Cores: Robust Large-Scale Bayesian Data Summarization in the Presence of Outliers
Dionysis Manousakas
Cecilia Mascolo
45
2
0
31 Aug 2020
Rejoinder: On nearly assumption-free tests of nominal confidence
  interval coverage for causal parameters estimated by machine learning
Rejoinder: On nearly assumption-free tests of nominal confidence interval coverage for causal parameters estimated by machine learning
Lin Liu
Rajarshi Mukherjee
J. M. Robins
CML
77
16
0
07 Aug 2020
Understanding Implicit Regularization in Over-Parameterized Single Index
  Model
Understanding Implicit Regularization in Over-Parameterized Single Index Model
Jianqing Fan
Zhuoran Yang
Mengxin Yu
81
18
0
16 Jul 2020
Robust subgaussian estimation with VC-dimension
Robust subgaussian estimation with VC-dimension
Jules Depersin
85
12
0
24 Apr 2020
II. High Dimensional Estimation under Weak Moment Assumptions:
  Structured Recovery and Matrix Estimation
II. High Dimensional Estimation under Weak Moment Assumptions: Structured Recovery and Matrix Estimation
Xiaohan Wei
127
0
0
05 Mar 2020
Algorithms of Robust Stochastic Optimization Based on Mirror Descent
  Method
Algorithms of Robust Stochastic Optimization Based on Mirror Descent Method
A. Juditsky
A. Nazin
A. S. Nemirovsky
Alexandre B. Tsybakov
71
64
0
05 Jul 2019
Affine Invariant Covariance Estimation for Heavy-Tailed Distributions
Affine Invariant Covariance Estimation for Heavy-Tailed Distributions
Dmitrii Ostrovskii
Alessandro Rudi
79
10
0
08 Feb 2019
Uniform Hanson-Wright type concentration inequalities for unbounded
  entries via the entropy method
Uniform Hanson-Wright type concentration inequalities for unbounded entries via the entropy method
Yegor Klochkov
Nikita Zhivotovskiy
81
31
0
09 Dec 2018
Finite-sample analysis of M-estimators using self-concordance
Finite-sample analysis of M-estimators using self-concordance
Dmitrii Ostrovskii
Francis R. Bach
87
52
0
16 Oct 2018
Implicit Self-Regularization in Deep Neural Networks: Evidence from
  Random Matrix Theory and Implications for Learning
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning
Charles H. Martin
Michael W. Mahoney
AI4CE
137
201
0
02 Oct 2018
Robust covariance estimation under $L_4-L_2$ norm equivalence
Robust covariance estimation under L4−L2L_4-L_2L4​−L2​ norm equivalence
S. Mendelson
Nikita Zhivotovskiy
109
61
0
27 Sep 2018
Uniform-in-Submodel Bounds for Linear Regression in a Model Free
  Framework
Uniform-in-Submodel Bounds for Linear Regression in a Model Free Framework
Arun K. Kuchibhotla
L. Brown
A. Buja
E. George
Linda H. Zhao
54
2
0
15 Feb 2018
Dimension-free PAC-Bayesian bounds for the estimation of the mean of a
  random vector
Dimension-free PAC-Bayesian bounds for the estimation of the mean of a random vector
O. Catoni
Ilaria Giulini
62
30
0
12 Feb 2018
Adaptive robust estimation in sparse vector model
Adaptive robust estimation in sparse vector model
L. Comminges
O. Collier
M. Ndaoud
Alexandre B. Tsybakov
116
16
0
12 Feb 2018
Robust Modifications of U-statistics and Applications to Covariance
  Estimation Problems
Robust Modifications of U-statistics and Applications to Covariance Estimation Problems
Stanislav Minsker
Xiaohan Wei
88
27
0
17 Jan 2018
Distributed Estimation of Principal Eigenspaces
Distributed Estimation of Principal Eigenspaces
Jianqing Fan
Dong Wang
Kaizheng Wang
Ziwei Zhu
102
166
0
21 Feb 2017
Sub-Gaussian estimators of the mean of a random matrix with heavy-tailed
  entries
Sub-Gaussian estimators of the mean of a random matrix with heavy-tailed entries
Stanislav Minsker
116
103
0
23 May 2016
1