Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1709.03423
Cited By
Ensemble Methods as a Defense to Adversarial Perturbations Against Deep Neural Networks
11 September 2017
Thilo Strauss
Markus Hanselmann
Andrej Junginger
Holger Ulmer
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Ensemble Methods as a Defense to Adversarial Perturbations Against Deep Neural Networks"
19 / 19 papers shown
Title
Lightweight Defense Against Adversarial Attacks in Time Series Classification
Yi Han
AAML
45
0
0
04 May 2025
Spiking Convolutional Neural Networks for Text Classification
Changze Lv
Jianhan Xu
Xiaoqing Zheng
58
28
0
27 Jun 2024
To Stay or Not to Stay in the Pre-train Basin: Insights on Ensembling in Transfer Learning
Ildus Sadrtdinov
Dmitrii Pozdeev
Dmitry Vetrov
E. Lobacheva
35
4
0
06 Mar 2023
Butterfly Effect Attack: Tiny and Seemingly Unrelated Perturbations for Object Detection
N. Doan
Arda Yüksel
Chih-Hong Cheng
AAML
18
1
0
14 Nov 2022
Data Augmentation Can Improve Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
34
271
0
09 Nov 2021
2-in-1 Accelerator: Enabling Random Precision Switch for Winning Both Adversarial Robustness and Efficiency
Yonggan Fu
Yang Katie Zhao
Qixuan Yu
Chaojian Li
Yingyan Lin
AAML
52
12
0
11 Sep 2021
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity
Shiwei Liu
Tianlong Chen
Zahra Atashgahi
Xiaohan Chen
Ghada Sokar
Elena Mocanu
Mykola Pechenizkiy
Zhangyang Wang
Decebal Constantin Mocanu
OOD
31
49
0
28 Jun 2021
Relating Adversarially Robust Generalization to Flat Minima
David Stutz
Matthias Hein
Bernt Schiele
OOD
38
65
0
09 Apr 2021
Fixing Data Augmentation to Improve Adversarial Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
36
271
0
02 Mar 2021
Omni: Automated Ensemble with Unexpected Models against Adversarial Evasion Attack
Rui Shu
Tianpei Xia
Laurie A. Williams
Tim Menzies
AAML
32
15
0
23 Nov 2020
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
17
324
0
07 Oct 2020
Adversarial Training with Stochastic Weight Average
Joong-won Hwang
Youngwan Lee
Sungchan Oh
Yuseok Bae
OOD
AAML
29
11
0
21 Sep 2020
Adversarial Machine Learning in Image Classification: A Survey Towards the Defender's Perspective
G. R. Machado
Eugênio Silva
R. Goldschmidt
AAML
33
157
0
08 Sep 2020
Adversarial Robustness: From Self-Supervised Pre-Training to Fine-Tuning
Tianlong Chen
Sijia Liu
Shiyu Chang
Yu Cheng
Lisa Amini
Zhangyang Wang
AAML
18
246
0
28 Mar 2020
Enhancing Certifiable Robustness via a Deep Model Ensemble
Huan Zhang
Minhao Cheng
Cho-Jui Hsieh
33
9
0
31 Oct 2019
Are You Tampering With My Data?
Michele Alberti
Vinaychandran Pondenkandath
Marcel Würsch
Manuel Bouillon
Mathias Seuret
Rolf Ingold
Marcus Liwicki
AAML
37
19
0
21 Aug 2018
Shield: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression
Nilaksh Das
Madhuri Shanbhogue
Shang-Tse Chen
Fred Hohman
Siwei Li
Li-Wei Chen
Michael E. Kounavis
Duen Horng Chau
FedML
AAML
45
225
0
19 Feb 2018
Towards Robust Neural Networks via Random Self-ensemble
Xuanqing Liu
Minhao Cheng
Huan Zhang
Cho-Jui Hsieh
FedML
AAML
58
419
0
02 Dec 2017
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
326
5,847
0
08 Jul 2016
1