ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.03768
  4. Cited By
Learning with Bounded Instance- and Label-dependent Label Noise

Learning with Bounded Instance- and Label-dependent Label Noise

12 September 2017
Jiacheng Cheng
Tongliang Liu
K. Ramamohanarao
Dacheng Tao
    NoLa
ArXivPDFHTML

Papers citing "Learning with Bounded Instance- and Label-dependent Label Noise"

17 / 17 papers shown
Title
Learning Causal Transition Matrix for Instance-dependent Label Noise
Learning Causal Transition Matrix for Instance-dependent Label Noise
Jiahui Li
Tai-wei Chang
Kun Kuang
Ximing Li
Long Chen
Jun Zhou
NoLa
CML
175
0
0
18 Dec 2024
Tackling Instance-Dependent Label Noise with Dynamic Distribution
  Calibration
Tackling Instance-Dependent Label Noise with Dynamic Distribution Calibration
Manyi Zhang
Yuxin Ren
Zihao W. Wang
C. Yuan
21
3
0
11 Oct 2022
Disparate Censorship & Undertesting: A Source of Label Bias in Clinical
  Machine Learning
Disparate Censorship & Undertesting: A Source of Label Bias in Clinical Machine Learning
Trenton Chang
Michael Sjoding
Jenna Wiens
22
11
0
01 Aug 2022
SimT: Handling Open-set Noise for Domain Adaptive Semantic Segmentation
SimT: Handling Open-set Noise for Domain Adaptive Semantic Segmentation
Xiaoqing Guo
Jie Liu
Tongliang Liu
Yiyuan Yuan
28
27
0
29 Mar 2022
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern
  Estimation
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation
Jeongeun Park
Seungyoung Shin
Sangheum Hwang
Sungjoon Choi
15
5
0
02 Nov 2021
EQFace: A Simple Explicit Quality Network for Face Recognition
EQFace: A Simple Explicit Quality Network for Face Recognition
Rushuai Liu
Weijun Tan
CVBM
22
18
0
03 May 2021
Collaborative Label Correction via Entropy Thresholding
Collaborative Label Correction via Entropy Thresholding
Hao Wu
Jiangchao Yao
Jiajie Wang
Yinru Chen
Ya-Qin Zhang
Yanfeng Wang
NoLa
16
4
0
31 Mar 2021
Analysing the Noise Model Error for Realistic Noisy Label Data
Analysing the Noise Model Error for Realistic Noisy Label Data
Michael A. Hedderich
D. Zhu
Dietrich Klakow
NoLa
21
19
0
24 Jan 2021
Beyond Class-Conditional Assumption: A Primary Attempt to Combat
  Instance-Dependent Label Noise
Beyond Class-Conditional Assumption: A Primary Attempt to Combat Instance-Dependent Label Noise
Pengfei Chen
Junjie Ye
Guangyong Chen
Jingwei Zhao
Pheng-Ann Heng
NoLa
31
122
0
10 Dec 2020
A Survey of Label-noise Representation Learning: Past, Present and
  Future
A Survey of Label-noise Representation Learning: Past, Present and Future
Bo Han
Quanming Yao
Tongliang Liu
Gang Niu
Ivor W. Tsang
James T. Kwok
Masashi Sugiyama
NoLa
24
158
0
09 Nov 2020
Importance Reweighting for Biquality Learning
Importance Reweighting for Biquality Learning
Pierre Nodet
V. Lemaire
A. Bondu
Antoine Cornuéjols
NoLa
16
6
0
19 Oct 2020
Part-dependent Label Noise: Towards Instance-dependent Label Noise
Part-dependent Label Noise: Towards Instance-dependent Label Noise
Xiaobo Xia
Tongliang Liu
Bo Han
Nannan Wang
Mingming Gong
Haifeng Liu
Gang Niu
Dacheng Tao
Masashi Sugiyama
NoLa
11
67
0
14 Jun 2020
Confidence Scores Make Instance-dependent Label-noise Learning Possible
Confidence Scores Make Instance-dependent Label-noise Learning Possible
Antonin Berthon
Bo Han
Gang Niu
Tongliang Liu
Masashi Sugiyama
NoLa
21
104
0
11 Jan 2020
DistillHash: Unsupervised Deep Hashing by Distilling Data Pairs
DistillHash: Unsupervised Deep Hashing by Distilling Data Pairs
Erkun Yang
Tongliang Liu
Cheng Deng
Wei Liu
Dacheng Tao
FedML
12
144
0
09 May 2019
On the Minimal Supervision for Training Any Binary Classifier from Only
  Unlabeled Data
On the Minimal Supervision for Training Any Binary Classifier from Only Unlabeled Data
Nan Lu
Gang Niu
A. Menon
Masashi Sugiyama
MQ
30
85
0
31 Aug 2018
Learning with Biased Complementary Labels
Learning with Biased Complementary Labels
Xiyu Yu
Tongliang Liu
Mingming Gong
Dacheng Tao
24
192
0
27 Nov 2017
Learning from Binary Labels with Instance-Dependent Corruption
Learning from Binary Labels with Instance-Dependent Corruption
A. Menon
Brendan van Rooyen
Nagarajan Natarajan
NoLa
31
41
0
03 May 2016
1