ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.05256
10
14

Detecting Faces Using Region-based Fully Convolutional Networks

14 September 2017
Yitong Wang
Xing Ji
Zheng Zhou
Hao Wang
Zhifeng Li
    ObjD
    CVBM
ArXivPDFHTML
Abstract

Face detection has achieved great success using the region-based methods. In this report, we propose a region-based face detector applying deep networks in a fully convolutional fashion, named Face R-FCN. Based on Region-based Fully Convolutional Networks (R-FCN), our face detector is more accurate and computational efficient compared with the previous R-CNN based face detectors. In our approach, we adopt the fully convolutional Residual Network (ResNet) as the backbone network. Particularly, We exploit several new techniques including position-sensitive average pooling, multi-scale training and testing and on-line hard example mining strategy to improve the detection accuracy. Over two most popular and challenging face detection benchmarks, FDDB and WIDER FACE, Face R-FCN achieves superior performance over state-of-the-arts.

View on arXiv
Comments on this paper