ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.07330
  4. Cited By
H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor
  Segmentation from CT Volumes

H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation from CT Volumes

21 September 2017
Xiaomeng Li
Hao Chen
Xiaojuan Qi
Qi Dou
Chi-Wing Fu
Pheng Ann Heng
ArXivPDFHTML

Papers citing "H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation from CT Volumes"

3 / 3 papers shown
Title
Multi-Slice Dense-Sparse Learning for Efficient Liver and Tumor
  Segmentation
Multi-Slice Dense-Sparse Learning for Efficient Liver and Tumor Segmentation
Ziyuan Zhao
Zeyu Ma
Yanjie Liu
Zeng Zeng
P. Chow
27
7
0
15 Aug 2021
nnU-Net: Self-adapting Framework for U-Net-Based Medical Image
  Segmentation
nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation
Fabian Isensee
Jens Petersen
André Klein
David Zimmerer
Paul F. Jaeger
...
Jakob Wasserthal
Gregor Koehler
T. Norajitra
Sebastian J. Wirkert
Klaus H. Maier-Hein
SSeg
13
765
0
27 Sep 2018
Automatic Liver Lesion Segmentation Using A Deep Convolutional Neural
  Network Method
Automatic Liver Lesion Segmentation Using A Deep Convolutional Neural Network Method
Xiao Han
MedIm
36
154
0
24 Apr 2017
1