Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1709.08765
Cited By
Network Topology and Communication-Computation Tradeoffs in Decentralized Optimization
26 September 2017
A. Nedić
Alexander Olshevsky
Michael G. Rabbat
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Network Topology and Communication-Computation Tradeoffs in Decentralized Optimization"
50 / 92 papers shown
Title
Communication Optimization for Decentralized Learning atop Bandwidth-limited Edge Networks
Tingyang Sun
Tuan Nguyen
Ting He
50
0
0
16 Apr 2025
Decentralized Federated Domain Generalization with Style Sharing: A Formal Modeling and Convergence Analysis
Shahryar Zehtabi
Dong-Jun Han
Seyyedali Hosseinalipour
Christopher G. Brinton
FedML
AI4CE
50
0
0
08 Apr 2025
A Bias-Correction Decentralized Stochastic Gradient Algorithm with Momentum Acceleration
Yuchen Hu
Xi Chen
Weidong Liu
Xiaojun Mao
67
0
0
31 Jan 2025
Scalable Decentralized Learning with Teleportation
Yuki Takezawa
Sebastian U. Stich
74
1
0
25 Jan 2025
Cooperative distributed model predictive control for embedded systems: Experiments with hovercraft formations
G. Stomberg
Roland Schwan
Andrea Grillo
Colin N. Jones
T. Faulwasser
39
2
0
20 Sep 2024
Distributed Event-Based Learning via ADMM
Güner Dilsad Er
Sebastian Trimpe
Michael Muehlebach
FedML
49
2
0
17 May 2024
Convergence of Decentralized Stochastic Subgradient-based Methods for Nonsmooth Nonconvex functions
Siyuan Zhang
Nachuan Xiao
Xin Liu
61
1
0
18 Mar 2024
Cost Optimized Scheduling in Modular Electrolysis Plants
Vincent Henkel
Maximilian Kilthau
Felix Gehlhoff
L. Wagner
Alexander Fay
18
1
0
07 Feb 2024
Faster Convergence with Less Communication: Broadcast-Based Subgraph Sampling for Decentralized Learning over Wireless Networks
Daniel Pérez Herrera
Zheng Chen
Erik G. Larsson
44
1
0
24 Jan 2024
Communication-Efficient Federated Optimization over Semi-Decentralized Networks
He Wang
Yuejie Chi
FedML
44
2
0
30 Nov 2023
Stability and Generalization of the Decentralized Stochastic Gradient Descent Ascent Algorithm
Miaoxi Zhu
Li Shen
Bo Du
Dacheng Tao
31
6
0
31 Oct 2023
A Tutorial on Distributed Optimization for Cooperative Robotics: from Setups and Algorithms to Toolboxes and Research Directions
Andrea Testa
Guido Carnevale
G. Notarstefano
39
10
0
08 Sep 2023
Decentralized Riemannian Conjugate Gradient Method on the Stiefel Manifold
Jun Chen
Haishan Ye
Mengmeng Wang
Tianxin Huang
Guangwen Dai
Ivor W.Tsang
Yong Liu
39
11
0
21 Aug 2023
Federated Learning for Connected and Automated Vehicles: A Survey of Existing Approaches and Challenges
Vishnu Pandi Chellapandi
Liangqi Yuan
Christopher G. Brinton
Stanislaw H. .Zak
Ziran Wang
FedML
43
78
0
21 Aug 2023
Distributed Random Reshuffling Methods with Improved Convergence
Kun-Yen Huang
Linli Zhou
Shi Pu
26
4
0
21 Jun 2023
Straggler-Resilient Decentralized Learning via Adaptive Asynchronous Updates
Guojun Xiong
Gang Yan
Shiqiang Wang
Jian Li
26
3
0
11 Jun 2023
Achieving Consensus over Compact Submanifolds
Jiang Hu
Jiaojiao Zhang
Kangkang Deng
43
4
0
07 Jun 2023
Beyond Exponential Graph: Communication-Efficient Topologies for Decentralized Learning via Finite-time Convergence
Yuki Takezawa
Ryoma Sato
Han Bao
Kenta Niwa
M. Yamada
44
9
0
19 May 2023
Convergence and Privacy of Decentralized Nonconvex Optimization with Gradient Clipping and Communication Compression
Boyue Li
Yuejie Chi
26
12
0
17 May 2023
Attacks on Robust Distributed Learning Schemes via Sensitivity Curve Maximization
Christian A. Schroth
Stefan Vlaski
A. Zoubir
FedML
59
1
0
27 Apr 2023
Homogenizing Non-IID datasets via In-Distribution Knowledge Distillation for Decentralized Learning
Deepak Ravikumar
Gobinda Saha
Sai Aparna Aketi
Kaushik Roy
23
2
0
09 Apr 2023
On the Convergence of Decentralized Federated Learning Under Imperfect Information Sharing
Vishnu Pandi Chellapandi
Antesh Upadhyay
Abolfazl Hashemi
Stanislaw H. .Zak
FedML
40
31
0
19 Mar 2023
A Survey of Federated Learning for Connected and Automated Vehicles
Vishnu Pandi Chellapandi
Liangqi Yuan
Stanislaw H. .Zak
Ziran Wang
FedML
38
34
0
19 Mar 2023
PRECISION: Decentralized Constrained Min-Max Learning with Low Communication and Sample Complexities
Zhuqing Liu
Xin Zhang
Songtao Lu
Jia-Wei Liu
45
7
0
05 Mar 2023
Distributed Optimization Methods for Multi-Robot Systems: Part II -- A Survey
O. Shorinwa
Trevor Halsted
Javier Yu
Mac Schwager
31
19
0
26 Jan 2023
Cooperative Distributed MPC via Decentralized Real-Time Optimization: Implementation Results for Robot Formations
G. Stomberg
Henrik Ebel
T. Faulwasser
P. Eberhard
22
15
0
19 Jan 2023
CEDAS: A Compressed Decentralized Stochastic Gradient Method with Improved Convergence
Kun-Yen Huang
Shin-Yi Pu
43
9
0
14 Jan 2023
Resilient Distributed Optimization for Multi-Agent Cyberphysical Systems
M. Yemini
Angelia Nedić
Andrea J. Goldsmith
Stephanie Gil
41
7
0
05 Dec 2022
A Penalty-Based Method for Communication-Efficient Decentralized Bilevel Programming
Parvin Nazari
Ahmad Mousavi
Davoud Ataee Tarzanagh
George Michailidis
48
4
0
08 Nov 2022
Double Averaging and Gradient Projection: Convergence Guarantees for Decentralized Constrained Optimization
Firooz Shahriari-Mehr
Ashkan Panahi
22
1
0
06 Oct 2022
Automated Performance Estimation for Decentralized Optimization via Network Size Independent Problems
Sébastien Colla
Julien Hendrickx
30
5
0
03 Oct 2022
Tackling Data Heterogeneity: A New Unified Framework for Decentralized SGD with Sample-induced Topology
Yan Huang
Ying Sun
Zehan Zhu
Changzhi Yan
Jinming Xu
FedML
38
15
0
08 Jul 2022
Byzantine-Resilient Decentralized Stochastic Optimization with Robust Aggregation Rules
Zhaoxian Wu
Tianyi Chen
Qing Ling
36
36
0
09 Jun 2022
Data-heterogeneity-aware Mixing for Decentralized Learning
Yatin Dandi
Anastasia Koloskova
Martin Jaggi
Sebastian U. Stich
43
18
0
13 Apr 2022
On Distributed Exact Sparse Linear Regression over Networks
Tu Anh-Nguyen
César A. Uribe
16
0
0
01 Apr 2022
Automatic Performance Estimation for Decentralized Optimization
Sébastien Colla
Julien Hendrickx
36
8
0
11 Mar 2022
An Improved Analysis of Gradient Tracking for Decentralized Machine Learning
Anastasia Koloskova
Tao R. Lin
Sebastian U. Stich
24
106
0
08 Feb 2022
BEER: Fast
O
(
1
/
T
)
O(1/T)
O
(
1/
T
)
Rate for Decentralized Nonconvex Optimization with Communication Compression
Haoyu Zhao
Boyue Li
Zhize Li
Peter Richtárik
Yuejie Chi
37
49
0
31 Jan 2022
Variance-Reduced Stochastic Quasi-Newton Methods for Decentralized Learning: Part I
Jiaojiao Zhang
Huikang Liu
Anthony Man-Cho So
Qing Ling
34
14
0
19 Jan 2022
Distributed Random Reshuffling over Networks
Kun-Yen Huang
Xiao Li
Andre Milzarek
Shi Pu
Junwen Qiu
41
11
0
31 Dec 2021
Distributed Adaptive Learning Under Communication Constraints
Marco Carpentiero
Vincenzo Matta
Ali H. Sayed
29
17
0
03 Dec 2021
Finite-Time Error Bounds for Distributed Linear Stochastic Approximation
Yixuan Lin
V. Gupta
Ji Liu
38
3
0
24 Nov 2021
Decentralized Federated Learning through Proxy Model Sharing
Shivam Kalra
Junfeng Wen
Jesse C. Cresswell
M. Volkovs
Hamid R. Tizhoosh
FedML
21
94
0
22 Nov 2021
Distributed Sparse Regression via Penalization
Yao Ji
G. Scutari
Ying Sun
Harsha Honnappa
34
5
0
12 Nov 2021
Paving the Way for Consensus: Convergence of Block Gossip Algorithms
Jamie Haddock
B. Jarman
C. Yap
16
5
0
27 Oct 2021
Exponential Graph is Provably Efficient for Decentralized Deep Training
Bicheng Ying
Kun Yuan
Yiming Chen
Hanbin Hu
Pan Pan
W. Yin
FedML
44
83
0
26 Oct 2021
DiNNO: Distributed Neural Network Optimization for Multi-Robot Collaborative Learning
Javier Yu
Joseph A. Vincent
Mac Schwager
53
36
0
17 Sep 2021
Can Decentralized Control Outperform Centralized? The Role of Communication Latency
Luca Ballotta
M. Jovanović
Luca Schenato
16
9
0
01 Sep 2021
Federated Multi-Task Learning under a Mixture of Distributions
Othmane Marfoq
Giovanni Neglia
A. Bellet
Laetitia Kameni
Richard Vidal
FedML
45
271
0
23 Aug 2021
Decentralized Constrained Optimization: Double Averaging and Gradient Projection
Firooz Shahriari-Mehr
David Bosch
Ashkan Panahi
21
8
0
21 Jun 2021
1
2
Next