ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.00486
  4. Cited By
DeepSafe: A Data-driven Approach for Checking Adversarial Robustness in
  Neural Networks

DeepSafe: A Data-driven Approach for Checking Adversarial Robustness in Neural Networks

2 October 2017
D. Gopinath
Guy Katz
C. Păsăreanu
Clark W. Barrett
    AAML
ArXivPDFHTML

Papers citing "DeepSafe: A Data-driven Approach for Checking Adversarial Robustness in Neural Networks"

5 / 5 papers shown
Title
Simplifying Neural Networks using Formal Verification
Simplifying Neural Networks using Formal Verification
S. Gokulanathan
Alexander Feldsher
Adi Malca
Clark W. Barrett
Guy Katz
6
4
0
25 Oct 2019
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
213
1,714
0
03 Feb 2017
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
253
2,899
0
04 Nov 2016
Safety Verification of Deep Neural Networks
Safety Verification of Deep Neural Networks
Xiaowei Huang
M. Kwiatkowska
Sen Wang
Min Wu
AAML
164
883
0
21 Oct 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
245
5,361
0
08 Jul 2016
1