ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.04647
55
17

Progressive Representation Adaptation for Weakly Supervised Object Localization

12 October 2017
Dong Li
Jia-Bin Huang
Yali Li
Shengjin Wang
Ming-Hsuan Yang
    ObjD
ArXiv (abs)PDFHTML
Abstract

We address the problem of weakly supervised object localization where only image-level annotations are available for training object detectors. Numerous methods have been proposed to tackle this problem through mining object proposals. However, a substantial amount of noise in object proposals causes ambiguities for learning discriminative object models. Such approaches are sensitive to model initialization and often converge to undesirable local minimum solutions. In this paper, we propose to overcome these drawbacks by progressive representation adaptation with two main steps: 1) classification adaptation and 2) detection adaptation. In classification adaptation, we transfer a pre-trained network to a multi-label classification task for recognizing the presence of a certain object in an image. Through the classification adaptation step, the network learns discriminative representations that are specific to object categories of interest. In detection adaptation, we mine class-specific object proposals by exploiting two scoring strategies based on the adapted classification network. Class-specific proposal mining helps remove substantial noise from the background clutter and potential confusion from similar objects. We further refine these proposals using multiple instance learning and segmentation cues. Using these refined object bounding boxes, we fine-tune all the layer of the classification network and obtain a fully adapted detection network. We present detailed experimental validation on the PASCAL VOC and ILSVRC datasets. Experimental results demonstrate that our progressive representation adaptation algorithm performs favorably against the state-of-the-art methods.

View on arXiv
Comments on this paper