ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.07706
  4. Cited By
Low Precision RNNs: Quantizing RNNs Without Losing Accuracy

Low Precision RNNs: Quantizing RNNs Without Losing Accuracy

20 October 2017
Supriya Kapur
Asit K. Mishra
Debbie Marr
    MQ
ArXivPDFHTML

Papers citing "Low Precision RNNs: Quantizing RNNs Without Losing Accuracy"

4 / 4 papers shown
Title
AutoQNN: An End-to-End Framework for Automatically Quantizing Neural
  Networks
AutoQNN: An End-to-End Framework for Automatically Quantizing Neural Networks
Cheng Gong
Ye Lu
Surong Dai
Deng Qian
Chenkun Du
Tao Li
MQ
27
0
0
07 Apr 2023
Training Integer-Only Deep Recurrent Neural Networks
Training Integer-Only Deep Recurrent Neural Networks
V. Nia
Eyyub Sari
Vanessa Courville
M. Asgharian
MQ
34
2
0
22 Dec 2022
iRNN: Integer-only Recurrent Neural Network
iRNN: Integer-only Recurrent Neural Network
Eyyub Sari
Vanessa Courville
V. Nia
MQ
42
4
0
20 Sep 2021
Term Revealing: Furthering Quantization at Run Time on Quantized DNNs
Term Revealing: Furthering Quantization at Run Time on Quantized DNNs
H. T. Kung
Bradley McDanel
S. Zhang
MQ
6
9
0
13 Jul 2020
1