ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.10793
  4. Cited By
Understanding GANs: the LQG Setting

Understanding GANs: the LQG Setting

30 October 2017
S. Feizi
Changho Suh
F. Xia
David Tse
ArXivPDFHTML

Papers citing "Understanding GANs: the LQG Setting"

11 / 11 papers shown
Title
Understanding Overparameterization in Generative Adversarial Networks
Understanding Overparameterization in Generative Adversarial Networks
Yogesh Balaji
M. Sajedi
N. Kalibhat
Mucong Ding
Dominik Stöger
Mahdi Soltanolkotabi
S. Feizi
AI4CE
12
21
0
12 Apr 2021
Rates of convergence for density estimation with generative adversarial
  networks
Rates of convergence for density estimation with generative adversarial networks
Nikita Puchkin
S. Samsonov
Denis Belomestny
Eric Moulines
A. Naumov
24
10
0
30 Jan 2021
EigenGame: PCA as a Nash Equilibrium
EigenGame: PCA as a Nash Equilibrium
I. Gemp
Brian McWilliams
Claire Vernade
T. Graepel
11
46
0
01 Oct 2020
GANs May Have No Nash Equilibria
GANs May Have No Nash Equilibria
Farzan Farnia
Asuman Ozdaglar
GAN
17
43
0
21 Feb 2020
A Review on Generative Adversarial Networks: Algorithms, Theory, and
  Applications
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
Jie Gui
Zhenan Sun
Yonggang Wen
Dacheng Tao
Jieping Ye
EGVM
26
817
0
20 Jan 2020
Differentiable Game Mechanics
Differentiable Game Mechanics
Alistair Letcher
David Balduzzi
S. Racanière
James Martens
Jakob N. Foerster
K. Tuyls
T. Graepel
29
79
0
13 May 2019
2-Wasserstein Approximation via Restricted Convex Potentials with
  Application to Improved Training for GANs
2-Wasserstein Approximation via Restricted Convex Potentials with Application to Improved Training for GANs
Amirhossein Taghvaei
Amin Jalali
17
42
0
19 Feb 2019
Entropic GANs meet VAEs: A Statistical Approach to Compute Sample
  Likelihoods in GANs
Entropic GANs meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs
Yogesh Balaji
Hamed Hassani
Rama Chellappa
S. Feizi
GAN
DRL
38
20
0
09 Oct 2018
Global Convergence to the Equilibrium of GANs using Variational
  Inequalities
Global Convergence to the Equilibrium of GANs using Variational Inequalities
I. Gemp
Sridhar Mahadevan
12
50
0
04 Aug 2018
Computation of optimal transport and related hedging problems via
  penalization and neural networks
Computation of optimal transport and related hedging problems via penalization and neural networks
Stephan Eckstein
Michael Kupper
OT
23
49
0
23 Feb 2018
Limit laws of the empirical Wasserstein distance: Gaussian distributions
Limit laws of the empirical Wasserstein distance: Gaussian distributions
Thomas Rippl
Axel Munk
A. Sturm
36
64
0
15 Jul 2015
1