Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.11592
Cited By
On Learning Mixtures of Well-Separated Gaussians
31 October 2017
O. Regev
Aravindan Vijayaraghavan
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"On Learning Mixtures of Well-Separated Gaussians"
25 / 25 papers shown
Title
How does promoting the minority fraction affect generalization? A theoretical study of the one-hidden-layer neural network on group imbalance
Hongkang Li
Shuai Zhang
Yihua Zhang
Meng Wang
Sijia Liu
Pin-Yu Chen
93
4
0
12 Mar 2024
Gaussian Mixture Identifiability from degree 6 Moments
Alexander Taveira Blomenhofer
57
2
0
07 Jul 2023
Private estimation algorithms for stochastic block models and mixture models
Hongjie Chen
Vincent Cohen-Addad
Tommaso dÓrsi
Alessandro Epasto
Jacob Imola
David Steurer
Stefan Tiegel
FedML
87
21
0
11 Jan 2023
Sample Complexity Bounds for Learning High-dimensional Simplices in Noisy Regimes
Amir Saberi
Amir Najafi
S. Motahari
B. Khalaj
59
5
0
09 Sep 2022
List-Decodable Sparse Mean Estimation via Difference-of-Pairs Filtering
Ilias Diakonikolas
D. Kane
Sushrut Karmalkar
Ankit Pensia
Thanasis Pittas
70
14
0
10 Jun 2022
Continuous LWE is as Hard as LWE & Applications to Learning Gaussian Mixtures
A. Gupte
Neekon Vafa
Vinod Vaikuntanathan
101
39
0
06 Apr 2022
Differentially-Private Clustering of Easy Instances
E. Cohen
Haim Kaplan
Yishay Mansour
Uri Stemmer
Eliad Tsfadia
71
25
0
29 Dec 2021
Clustering Mixtures with Almost Optimal Separation in Polynomial Time
Jingkai Li
Allen Liu
59
23
0
01 Dec 2021
Uniform Consistency in Nonparametric Mixture Models
Bryon Aragam
Ruiyi Yang
64
6
0
31 Aug 2021
SoS Degree Reduction with Applications to Clustering and Robust Moment Estimation
David Steurer
Stefan Tiegel
63
10
0
05 Jan 2021
Improved Convergence Guarantees for Learning Gaussian Mixture Models by EM and Gradient EM
Nimrod Segol
B. Nadler
87
13
0
03 Jan 2021
Small Covers for Near-Zero Sets of Polynomials and Learning Latent Variable Models
Ilias Diakonikolas
D. Kane
77
33
0
14 Dec 2020
Sparse PCA: Algorithms, Adversarial Perturbations and Certificates
Tommaso dÓrsi
Pravesh Kothari
Gleb Novikov
David Steurer
AAML
112
25
0
12 Nov 2020
Continuous LWE
Joan Bruna
O. Regev
M. Song
Yi Tang
43
51
0
19 May 2020
Learning sums of powers of low-degree polynomials in the non-degenerate case
A. Garg
N. Kayal
Chandan Saha
58
24
0
15 Apr 2020
The EM Algorithm gives Sample-Optimality for Learning Mixtures of Well-Separated Gaussians
Jeongyeol Kwon
Constantine Caramanis
48
5
0
02 Feb 2020
Differentially Private Algorithms for Learning Mixtures of Separated Gaussians
Gautam Kamath
Or Sheffet
Vikrant Singhal
Jonathan R. Ullman
FedML
87
48
0
09 Sep 2019
Private Hypothesis Selection
Mark Bun
Gautam Kamath
Thomas Steinke
Zhiwei Steven Wu
89
91
0
30 May 2019
EM Converges for a Mixture of Many Linear Regressions
Jeongyeol Kwon
Constantine Caramanis
72
40
0
28 May 2019
Scalable K-Medoids via True Error Bound and Familywise Bandits
A. Babu
Saurabh Agarwal
Sudarshan Babu
Hariharan Chandrasekaran
17
0
0
27 May 2019
Tight Kernel Query Complexity of Kernel Ridge Regression and Kernel
k
k
k
-means Clustering
Manuel Fernández
David P. Woodruff
T. Yasuda
55
7
0
15 May 2019
Iterative Least Trimmed Squares for Mixed Linear Regression
Yanyao Shen
Sujay Sanghavi
80
25
0
10 Feb 2019
Partial recovery bounds for clustering with the relaxed
K
K
K
means
Christophe Giraud
Nicolas Verzélen
265
60
0
19 Jul 2018
Better Agnostic Clustering Via Relaxed Tensor Norms
Pravesh Kothari
Jacob Steinhardt
133
61
0
20 Nov 2017
List-Decodable Robust Mean Estimation and Learning Mixtures of Spherical Gaussians
Ilias Diakonikolas
D. Kane
Alistair Stewart
139
147
0
20 Nov 2017
1