ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.00721
  4. Cited By
Estimating Historical Hourly Traffic Volumes via Machine Learning and
  Vehicle Probe Data: A Maryland Case Study

Estimating Historical Hourly Traffic Volumes via Machine Learning and Vehicle Probe Data: A Maryland Case Study

2 November 2017
Przemysław Sekuła
Nikola Marković
Zachary Vander Laan
K. Sadabadi
ArXivPDFHTML

Papers citing "Estimating Historical Hourly Traffic Volumes via Machine Learning and Vehicle Probe Data: A Maryland Case Study"

2 / 2 papers shown
Title
Estimating city-wide hourly bicycle flow using a hybrid LSTM MDN
Estimating city-wide hourly bicycle flow using a hybrid LSTM MDN
M. S. Myhrmann
S. E. Mabit
21
4
0
20 Apr 2022
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,638
0
03 Jul 2012
1