Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1711.00851
Cited By
v1
v2
v3 (latest)
Provable defenses against adversarial examples via the convex outer adversarial polytope
2 November 2017
Eric Wong
J. Zico Kolter
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Github (387★)
Papers citing
"Provable defenses against adversarial examples via the convex outer adversarial polytope"
50 / 957 papers shown
Title
Data-Driven Certification of Neural Networks with Random Input Noise
IEEE Transactions on Control of Network Systems (TCNS), 2020
Brendon G. Anderson
Somayeh Sojoudi
AAML
339
12
0
02 Oct 2020
Block-wise Image Transformation with Secret Key for Adversarially Robust Defense
IEEE Transactions on Information Forensics and Security (IEEE TIFS), 2020
Maungmaung Aprilpyone
Hitoshi Kiya
136
58
0
02 Oct 2020
Bag of Tricks for Adversarial Training
International Conference on Learning Representations (ICLR), 2020
Tianyu Pang
Xiao Yang
Yinpeng Dong
Hang Su
Jun Zhu
AAML
329
282
0
01 Oct 2020
Assessing Robustness of Text Classification through Maximal Safe Radius Computation
Findings (Findings), 2020
Emanuele La Malfa
Min Wu
Luca Laurenti
Benjie Wang
Anthony Hartshorn
Marta Z. Kwiatkowska
AAML
188
19
0
01 Oct 2020
Adversarial Robustness of Stabilized NeuralODEs Might be from Obfuscated Gradients
Mathematical and Scientific Machine Learning (MSML), 2020
Yifei Huang
Yaodong Yu
Hongyang R. Zhang
Yi-An Ma
Xingtai Lv
AAML
146
30
0
28 Sep 2020
Semantics-Preserving Adversarial Training
Won-Ok Lee
Hanbit Lee
Sang-goo Lee
AAML
116
2
0
23 Sep 2020
NeuroDiff: Scalable Differential Verification of Neural Networks using Fine-Grained Approximation
International Conference on Automated Software Engineering (ASE), 2020
Brandon Paulsen
Jingbo Wang
Jiawei Wang
Chao Wang
170
40
0
21 Sep 2020
Efficient Certification of Spatial Robustness
AAAI Conference on Artificial Intelligence (AAAI), 2020
Anian Ruoss
Maximilian Baader
Mislav Balunović
Martin Vechev
AAML
131
26
0
19 Sep 2020
EI-MTD:Moving Target Defense for Edge Intelligence against Adversarial Attacks
ACM Transactions on Privacy and Security (TOPS), 2020
Yaguan Qian
Qiqi Shao
Jiamin Wang
Xiangyuan Lin
Yankai Guo
Zhaoquan Gu
Bin Wang
Chunming Wu
AAML
253
26
0
19 Sep 2020
Deep Learning & Software Engineering: State of Research and Future Directions
P. Devanbu
Matthew B. Dwyer
Sebastian G. Elbaum
M. Lowry
Kevin Moran
Denys Poshyvanyk
Baishakhi Ray
Rishabh Singh
Xiangyu Zhang
116
23
0
17 Sep 2020
Large Norms of CNN Layers Do Not Hurt Adversarial Robustness
AAAI Conference on Artificial Intelligence (AAAI), 2020
Youwei Liang
Dong Huang
302
12
0
17 Sep 2020
Certifying Confidence via Randomized Smoothing
Neural Information Processing Systems (NeurIPS), 2020
Aounon Kumar
Alexander Levine
Soheil Feizi
Tom Goldstein
UQCV
215
41
0
17 Sep 2020
A Game Theoretic Analysis of Additive Adversarial Attacks and Defenses
Neural Information Processing Systems (NeurIPS), 2020
Ambar Pal
René Vidal
AAML
194
30
0
14 Sep 2020
Towards the Quantification of Safety Risks in Deep Neural Networks
Peipei Xu
Wenjie Ruan
Xiaowei Huang
155
7
0
13 Sep 2020
Defending Against Multiple and Unforeseen Adversarial Videos
IEEE Transactions on Image Processing (TIP), 2020
Shao-Yuan Lo
Vishal M. Patel
AAML
320
28
0
11 Sep 2020
SoK: Certified Robustness for Deep Neural Networks
IEEE Symposium on Security and Privacy (IEEE S&P), 2020
Linyi Li
Tao Xie
Yue Liu
AAML
592
143
0
09 Sep 2020
Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp Adversarial Attacks
Neural Information Processing Systems (NeurIPS), 2020
Wei-An Lin
Chun Pong Lau
Alexander Levine
Ramalingam Chellappa
Soheil Feizi
AAML
212
63
0
05 Sep 2020
Benchmarking adversarial attacks and defenses for time-series data
International Conference on Neural Information Processing (ICONIP), 2020
Shoaib Ahmed Siddiqui
Andreas Dengel
Sheraz Ahmed
AAML
AI4TS
113
15
0
30 Aug 2020
Efficient Robustness Certificates for Discrete Data: Sparsity-Aware Randomized Smoothing for Graphs, Images and More
International Conference on Machine Learning (ICML), 2020
Aleksandar Bojchevski
Johannes Klicpera
Stephan Günnemann
AAML
278
93
0
29 Aug 2020
Adversarially Robust Learning via Entropic Regularization
Frontiers in Artificial Intelligence (FAI), 2020
Gauri Jagatap
Ameya Joshi
A. B. Chowdhury
S. Garg
Chinmay Hegde
OOD
223
12
0
27 Aug 2020
On
ℓ
p
\ell_p
ℓ
p
-norm Robustness of Ensemble Stumps and Trees
Yihan Wang
Huan Zhang
Hongge Chen
Duane S. Boning
Cho-Jui Hsieh
AAML
160
7
0
20 Aug 2020
Improving adversarial robustness of deep neural networks by using semantic information
Lina Wang
Rui Tang
Yawei Yue
Xingshu Chen
Wei Wang
Yi Zhu
Xuemei Zeng
AAML
197
17
0
18 Aug 2020
Adversarial Training and Provable Robustness: A Tale of Two Objectives
Jiameng Fan
Wenchao Li
AAML
201
23
0
13 Aug 2020
Learning to Learn from Mistakes: Robust Optimization for Adversarial Noise
International Conference on Artificial Neural Networks (ICANN), 2020
A. Serban
E. Poll
Joost Visser
AAML
155
1
0
12 Aug 2020
Adversarial Examples on Object Recognition: A Comprehensive Survey
ACM Computing Surveys (ACM CSUR), 2020
A. Serban
E. Poll
Joost Visser
AAML
389
79
0
07 Aug 2020
Stronger and Faster Wasserstein Adversarial Attacks
International Conference on Machine Learning (ICML), 2020
Kaiwen Wu
Allen Wang
Yaoliang Yu
AAML
153
38
0
06 Aug 2020
Robust Deep Reinforcement Learning through Adversarial Loss
Tuomas P. Oikarinen
Wang Zhang
Alexandre Megretski
Luca Daniel
Tsui-Wei Weng
AAML
319
114
0
05 Aug 2020
Efficient Adversarial Attacks for Visual Object Tracking
European Conference on Computer Vision (ECCV), 2020
Yaning Tan
Xingxing Wei
Siyuan Yao
Xiaochun Cao
AAML
179
93
0
01 Aug 2020
Reachable Sets of Classifiers and Regression Models: (Non-)Robustness Analysis and Robust Training
Machine-mediated learning (ML), 2020
Anna-Kathrin Kopetzki
Stephan Günnemann
164
4
0
28 Jul 2020
Hierarchical Verification for Adversarial Robustness
International Conference on Machine Learning (ICML), 2020
Cong Han Lim
R. Urtasun
Ersin Yumer
AAML
132
6
0
23 Jul 2020
Robust Machine Learning via Privacy/Rate-Distortion Theory
Ye Wang
Shuchin Aeron
Adnan Siraj Rakin
T. Koike-Akino
P. Moulin
OOD
152
7
0
22 Jul 2020
SOCRATES: Towards a Unified Platform for Neural Network Analysis
Long H. Pham
Jiaying Li
Jun Sun
116
9
0
22 Jul 2020
Scaling Polyhedral Neural Network Verification on GPUs
Christoph Müller
F. Serre
Gagandeep Singh
Markus Püschel
Martin Vechev
AAML
237
64
0
20 Jul 2020
DiffRNN: Differential Verification of Recurrent Neural Networks
Sara Mohammadinejad
Brandon Paulsen
Chao Wang
Jyotirmoy V. Deshmukh
206
13
0
20 Jul 2020
Understanding and Diagnosing Vulnerability under Adversarial Attacks
Haizhong Zheng
Ziqi Zhang
Honglak Lee
A. Prakash
FAtt
AAML
152
6
0
17 Jul 2020
Do Adversarially Robust ImageNet Models Transfer Better?
Neural Information Processing Systems (NeurIPS), 2020
Hadi Salman
Andrew Ilyas
Logan Engstrom
Ashish Kapoor
Aleksander Madry
306
461
0
16 Jul 2020
Certifiably Adversarially Robust Detection of Out-of-Distribution Data
Julian Bitterwolf
Alexander Meinke
Matthias Hein
328
9
0
16 Jul 2020
Learning perturbation sets for robust machine learning
International Conference on Learning Representations (ICLR), 2020
Eric Wong
J. Zico Kolter
OOD
227
84
0
16 Jul 2020
Accelerating Robustness Verification of Deep Neural Networks Guided by Target Labels
Wenjie Wan
Zhaodi Zhang
Yiwei Zhu
Min Zhang
Fu Song
AAML
128
9
0
16 Jul 2020
Adversarial robustness via robust low rank representations
Neural Information Processing Systems (NeurIPS), 2020
Pranjal Awasthi
Himanshu Jain
A. S. Rawat
Aravindan Vijayaraghavan
AAML
163
25
0
13 Jul 2020
Security and Machine Learning in the Real World
Ivan Evtimov
Weidong Cui
Ece Kamar
Emre Kıcıman
Tadayoshi Kohno
Haibin Zhang
AAML
99
16
0
13 Jul 2020
Beyond Perturbations: Learning Guarantees with Arbitrary Adversarial Test Examples
Neural Information Processing Systems (NeurIPS), 2020
S. Goldwasser
Adam Tauman Kalai
Y. Kalai
Omar Montasser
AAML
178
44
0
10 Jul 2020
Making Adversarial Examples More Transferable and Indistinguishable
AAAI Conference on Artificial Intelligence (AAAI), 2020
Junhua Zou
Yexin Duan
Xin Liu
Junyang Qiu
Yu Pan
Zhisong Pan
AAML
168
38
0
08 Jul 2020
Regional Image Perturbation Reduces
L
p
L_p
L
p
Norms of Adversarial Examples While Maintaining Model-to-model Transferability
Utku Ozbulak
Jonathan Peck
W. D. Neve
Bart Goossens
Yvan Saeys
Arnout Van Messem
AAML
124
2
0
07 Jul 2020
Understanding and Improving Fast Adversarial Training
Maksym Andriushchenko
Nicolas Flammarion
AAML
255
325
0
06 Jul 2020
Trace-Norm Adversarial Examples
Ehsan Kazemi
Thomas Kerdreux
Liqiang Wang
124
2
0
02 Jul 2020
Opportunities and Challenges in Deep Learning Adversarial Robustness: A Survey
S. Silva
Peyman Najafirad
AAML
OOD
286
148
0
01 Jul 2020
Determining Sequence of Image Processing Technique (IPT) to Detect Adversarial Attacks
Kishor Datta Gupta
Zahid Akhtar
D. Dasgupta
AAML
205
10
0
01 Jul 2020
Neural Network Virtual Sensors for Fuel Injection Quantities with Provable Performance Specifications
Eric Wong
Tim Schneider
Joerg Schmitt
Frank R. Schmidt
J. Zico Kolter
AAML
171
11
0
30 Jun 2020
Black-box Certification and Learning under Adversarial Perturbations
H. Ashtiani
Vinayak Pathak
Ruth Urner
AAML
163
20
0
30 Jun 2020
Previous
1
2
3
...
11
12
13
...
18
19
20
Next